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When our textbook [Bird, Stewart, and Lighffoot, 1960-- 
hereinafter referred to as BSL] was published there was a 
general feeling in the profession that the book was overly 
theoretical and that little or ever serious use would be made 
of the equations of change. Because of the rapid development 
of computers and numerical methods in the intervening time, 
however, it is now possible to take a more fundamental view- 
point in the solution of certain classes of problems. As a re- 
suit, the subject of transport phenomena is being increasing- 
ly used, not only in chemical engineering but in a variety of 
scientific and engineering disciplines. 

Through the years, the viewpoints of the authors of the a- 
bove-mentioned book have evolved, and we have gradually 
introduced new ideas into the teaching program at the Univer- 
sity of Wisconsin. This review contains some topics not con- 
tained in BSL, as well as some material from BSL presented 
in a different way. Also a number of newer references are cit- 
ed. Perhaps this review will be helpful to students and teachers. 

For the most part the notation of BSL will be used here. 
In writing dot, double-dot, and cross products, we use paren- 
theses ( ) to indicate operations that yield a scalar, brackets [ ] 
for those that yield a vector, and braces { } for those that yield 
a tensor. These enclosures further serve to show which quan- 
tities are being operated on by the V-operator. For example, 
the quantity [V. pw]  is a vector, and it is understood that the 
V-operator involves differentiation of all three symbols to the 
right of it. Similarly (x:Vv) and (V-pl3v) are operations that 
result in scalars. Since the above rules apply only if dot or 
cross operations are involved, we may write either Vv or (Vv), 
and v+w may be written either as (v+w). or as Iv+w]. Vectors 
are bold-face Roman letters, and tensors are bold-face Greek 
symbols. The unit tensor is 8 with components ~ (the Kronec- 

ker delta), and the unit vectors in the three coordinate direc- 
tions are indicated by bold-face deltas with the appropriate sub- 
script: &, &, &. The tensor e is a third-order tensor, with 
components e~, = �89  k)(k-i). In equations that are writ- 
ten for multicomponent mixtures the various chemical species 
are indicated with Greek subscripts ct, ]3, ... running from 1 to 
N. In equations written specifically for binary mixtures, the Ro- 
man subscripts A and B are used to designate the two chem- 
ical species. A circumflex (") over a symbol means that it is 
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a quantity "per unit mass". 
The subject of transport phenomena makes use of the con- 

servation laws of  physics: the conservation of mass, momen- 
tum, angular momenttim, and energy. These laws are taken 
over without question. It is worth noting that the law of con- 
servation of energy may be derived from the homogeneity 
of  time, the law of  conservation of momentum from the ho- 
mogeneity of space, and the law of angular momentum from 
the isotropy of space [Landau and Lifshitz, 1960, Chapter 2; 
Callen, 1985, w 

These conservation principles may be applied to molec- 
ular collisions at the molecular level (in the development of 
kinetic theory), to an infinitesimal region within a fluid at the 
microscopic level (in the continuum development of the equa- 
tions of change), and to large pieces of equipment at the ma- 
croscopic level (in the development of the macroscopic bal- 
ances). However, at each level it is necessary to invoke some 
empiricisms. At the molecular level, we have to postulate a 
form for the intermolecular potential energy; at the microsco- 
pic level, we need expressions for the fluxes in terms of the 
transport properties, and at the macroscopic level, we need 
empirical correlations for the transfer coefficients in terms of the 
various relevant dimensionless groups characterizing the system. 

It is also possible to speak of a mesoscopic level in which 
a mulfiphase system is treated as a hypothetical continuum. For 
example, a suspension of particles can be treated as a ficti- 
tious fluid with a prescribed viscosity (or other rheological 
properties). A solid containing inclusions of a second solid 
phase can be treated as a fictitious solid with an effective 
thermal conductivity. The flow through a packed bed or po- 
rous medium can be described by some kind of spatially 
smoothed equation such as Darcy's law. We do not enter 
in to a discussion of such methods of description here [see 
Brenner and Edwards, 1993, for a thorough presentation]. 

1. THE M O L E C U L A R  V I E W P O I N T  

We begin by writing down the conservation laws for mole- 
cules participating in binary collisions. Then we show how 
this information is used in generating the equations of change 
from the Boltzmann equation for dilute monatomic gas mix- 
tures. It is seen that by-products of this derivation are the for- 
mal molecular expressions for the fluxes of mass, momentum, 
and energy. The derivation of  the kinetic theory expressions 
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106 R.B. Bird 

for the transport properties for dilute monatomic gas mixtures 
is then discussed. Finally, the molecular theory of polymeric 
fluids is described. 
1-1. Conservation Laws in Molecular Collisions 

A rigorous description of molecular motions and collisions 
requires quantum mechanics; however, classical mechanics is 
usually adequate for use in kinetic theory, except for the tight- 
est of molecules (He and H2) at very low temperatures. In Fig. 
1 we depict a collision between two homonuclear diatomic mo- 
lecules, A and B, in a dilute gas, in the absence of chemical 
reactions; we also show the coordinate system used to describe 
the locations of the two atoms, "f '  and "2"', in the molecule 
A by means of position vectors with respect to an arbitrarily 
chosen origin. 

We want to obtain relations between certain quantities be- 
fore and after a collision. By "before a collision" we mean that 
the two molecules destined to collide are sufficiently far from 
one another, so that there is no intermolecular force felt be- 
tween the molecules; similarly "after the collision" means that 
the molecules have traveled far enough following their en- 
counter so that the intermolecular forces are no longer felt. 
Quantities after the collision are designated by primes. 

(a) A collision between homonuclcar 
diatomic molecules 

# 

Molecule A before COllision it 
/ 

# 

i / 
f 

/ 
/ "  

## 
! 
I Molectde B befot'e collision 

\ 

~ e  A after eollitian 

(b) Position vectors for the atoms in 
molecule A 

/ /  c _ o , _ o , . o o ~  

0 sta,biula.yoriKmlil~in~ 

Fig. 1. A collision between two homonuclear diatomic mole- 
cules, in which mass, momentum, angular momentum, 
and energy are conserved. Quantities after a collision 
have primes on them. 

(a) According to the law of conservation of mass, the total 
mass of the molecules entering and leaving the collision must 
be equal: 

mA +ms =m~t +m~. (1) 

Here mA and ms are the masses of molecules A and B. Since 
there are no chemical reactions, the masses of the individual 
species will also be conserved, so that 

m A = m~, and m B= m~. (2) 

(b) According to the law of conservation of momentum the 
total momentum of the molecules that are about collide must 
equal that of the molecules after the collision, so that 

mAli'A1 + mA2i'A2 + m ~ / ~  + mezra2 = 
m~u k~t 1 + m~2 i'~z + m~n r~ + m~/'k2, (3) 

in which rA~ is the position vector for atom "1" of molecule 
A, and rA~ is its velocity. If we switch to the molecule center- 
of-mass position vector rA and the relative position vectors 1~1 
and P,~, and then recognize that 1~2 = -  Ral (with a similar re- 
lation being true for the corresponding velocities), we get 

mai A +mBi B = irk r~ + mar ~. (4) 

Here we have also used the fact that, for homonuclear diatom- 
ic molecules, mAl=mA2=�89 

(C) According to the law of conservation of energy, the en- 
ergy of the colliding pair of molecules must be the same be- 
fore and after the collision. The energy of a molecule con- 
sists of the sum of the kinetic energies of the atoms and the 
interatomic potential energy, ~a, which describes the force of 

the chemical bond that joins the two atoms "1" and "2" of 
molecule A, and is a function of IrA2-r,, I. Therefore energy 
conservation leads to 

{ ~ ~ ( I "2 I "2 
t / t / 2 - r n ' t  U" + ~-m'2 kAz2 + +" / + I 2-ran' r "  + 2-m~ r~ + + n ) I  -~ = 

( t  �9 ",2+~.n~ 2r,i2+~A]+(1 �9 -,2 1 �9 ",2 �9 "~ ~nlA1 rA, 1 ' " 2  ; ~rnnl  r=' + 2-ins2 r~" + ~ J" 

(5) 
By switching to the coordinates for the center of mass and 
the relative coordinates (and the corresponding velocities) we 
get 

1 ",2 �9 (1 ",2 �9 ~-mArA+UA/+ --  ) (6) L 2 m s r B + u s  , 

in which ~ - 2 UA=~-mAkR~ + r is the sum of the kinetic energies 

of the atoms referred to the center of  mass of  molecule A, 
and the interatomic potential energy of molecule A. Thus we 
split up the energy of each molecule into its kinetic energy 
with respect to fixed coordinates, and the internal energy of 
the molecule (which includes the vibrational, rotational, and in- 
teratomic potential energies). 

(d) Finally, the law of conservation of angular momentum 
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can be applied to a collision to give 

([rAl • mA~ ta~ ]+[~ • m~z t.~]) 

+ ([rB1 • mB1 rB1 ] + [r~. • m~ ~ ]) 

= ([rll • n~l i.41 1 + [r.42 X 11~2i~2 ]) 
+ ([rA, X %1 iBI ] + [rB2 X ~ i~2 ]). (7) 

Next we introduce center-of-mass and relative coordinates and 
velocities and obtain: 

([ra XmA~A] +IA)+(IrB • +IB)= 
([r; • Xmnk~I+/A), (8) 

in which &=[RA, X r r ~ , ~ ]  + [RA2x na~2~21 is the internal angu- 
lar momentum of molecule A. 

The conservation laws for the collisions of monatomic mole- 
cules can be obtained from the results above as follows: Eqs. 
(1), (2), and (4) are directly applicable; Eq. (6) is applicable if 
the internal energy contributions are omitted; and Eq. (8) may 
be used if the internal angular momentum terms are discard- 
ed [see w of Hirsclffelder et al., 1964, for a discussion of 
collisions between monatomic molecules]. 
1-2. Fluxes as Integrals over the Distribution Function 

In applying kinetic theory (nonequilibrium statistical mech- 
anics) to any kind of system, it is necessary to derive some 
kind of equation for a distribution function and to know how 
to solve it. For a dilute non-reacting monatomic gas mixture 
[Chapman and Cowling, 1970, Chapter 3; Hirschfelder et al., 
1964, Chapter 7; I ~ h i t z  and Pitaevskii, 1981, Chapter 1], the 
relevant equation is the Boltzmann equation for fa (r, i'o, t), 
which is the probability density that at position r, and time 
t, a molecule of species ~ will have a velocity ra: 

~ a + [ ' a ' - ~ - / + [ g a "  ~ .  } = J  w (9) 

Here g~ is the force per unit mass acting on a molecule of 
species a, and Ja is a very complicated multiple integral term 
accounting for the change in the distribution function result- 
ing from molecular collisions; this term involves the inter- 
molecular potential energy function and the details of the colli- 
sion dynamics. The distribution function is normalized to the 

number density of species a:. ~ ~ r ,  i'~, t)di'~ = r~r 

Recently it has been shown [Curtiss, 1992a, b, c] that the 
Boltzmann equation in Eq. (9) is incomplete in that it does 
not account for the existence of "bound pairs" of molecules, 
that is, pairs of molecules that orbit around one other;, Curtiss 
has shown how to correct the equation and to use the appro- 
priately modified equation to compute the transport proper- 
ties. The effect of this modification is important, however, 
only at very low temperatures. 

When Eq. (9) is multiplied by a molecular property ~g,~ and 
then integrated over all molecular velocities, the general equa- 
tion of change is obtained: 

+/,o. :s,o  o  ojj (10) 

in which the overbar indicates an average value defined as 
follows: 

~(r, 0 = (1/n,OS~g~i,,)fAr. to, t ~ .  (11) 

Next, we let ig~ be successively m| the three components of 
m~(k~-v),  and �89  2, in which v is the mass-average 

velocity of  the fluid mixture. These three choices for Ig~ in- 
volve conserved quantifies: mass, momentum, and energy; for 
such quantities the collision term on the fight side of Eq. (10) 
can be shown to vanish [Hirschfelder, et al., 1964, w and 
the equations of change for mass, momentum, and energy are 
obtained: 

~-  p,~ = - (V. p,~v) - OZ- j,,), (12) 

0 ~-  pv = - [V-pvv] - [V- ~r] + Y.d~,~g,~, (13) 

- Oz. Ix. vl) + E~((i ,  + o ,v ) .  g,,), (14) 

in which the molecular fluxes j , ,  x; and q are given as inte- 
grals over the distribution function: 

Ja = nama (i 'a- v), (15) 

,~ = ~ .  ( ~ -  v•  - v ) ,  (16) 

q = ~a l n d n a ( r a -  v~( ra -  v) �9 (17) 

Note the similarity in the structures of these molecular fluxes 
and those for the convective fluxes pay, pvv, and � 89  2 v ap- 

pearing in the equations of change above. 
The above discussion illustrates how one can begin at the 

molecular level and obtain the equations of change, F_qs. (12) to 
(14), and at the same time generate expressions for the molec- 
ular fluxes in terms of integrals involving a distribution func- 
tion, Eqs. (15) to (17). This same technique has been used for 
monatomic liquids [Irving and Kirkwood, 1950; Bearman and 
Kirkwood, 1958] and for polymeric liquids [Ctu'tiss and Bird, 
1996a, b, 1997]. For liquids the kinetic theory is much more 
complicated because of the diverse mechanisms for transport 
and because it is necessary to invoke distribution functions 
for pairs of moleoales, about which relatively little is known at 
present. Nonetheless, the formal theories have been developed, 
and these can be used with some confidence for further de- 
velopments in the theory of liquids. 
1-3. Molecular Expressions for the Transport Properties 

To evaluate the fluxes for low-density gas mixtures an ex- 
plicit expression for the distffoution function f~ (r, io, t) is need- 
ed, and this is obtained by solving the Bollzmann equation. 
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108 R.B. Bird 

The solution of this complicated integrodifferential equation 
was one of the great triumphs of theoretical physics in the 
first part of the twentieth century, and discussions of the details 
are readily available [Chapman and Cowling, 1970; Hirsch- 
felder et al., 1964]. For a system at equilibrium the solution 
of the equation is just the well-known Maxwell-Boltzmaun 
distribution. 

For nonequilibrium systems one expands the distribution 
function in terms of the gradients of concentration, velocity, 
and temperature. In this way expressions are obtained for the 
coefficients associated with each of these gradients, that is, 
the transport properties. The formal expressions were work- 
ed out for multicomponent mixtures in mid-century [Curtiss 
and Hirschfelder, 1949], and shortly thereafter extensive tables 
were prepared for estimating the transport properties by using 
the Lennard-Jones 6-12 intermolecular potential, which accounts 
for the attractive and repulsive forces between pairs of mole- 
cules [Hirschfelder et al., 1964, w 

Here 0(r) is the intermolecular potential energy as a function 
of the intermolecular separation r. The parameter e is the max- 
imum energy of attraction for the pair of molecules, and ~ 
is the distance at which the potential energy is zero-the "colli- 
sion diameter". 

The simplest formulas for the transport properties are those 
for a pure dilute gas; in the lowest approximation (good enough 
for most purposes) these are: 

3 ( ~  1 3 "~'f~mm "19" 

Viscosity: ~ = ~ -  ~------~-~, (20) 

Thermal 64 ~ r ~  u m 4 m conductr~ty: k . . . . . . .  (21) 

Here m is the mass of a molecule, T the absolute tempera- 
ture, k Boltzmarm's constant. The quantities ~ and ~ are 
functions of the dimensionless temperature kT/e; the most up- 
to-date tabulation of these functions is that based on Curtiss's 
modified Boltzmann equation [Curtiss, 1992c]. Similar formulas 
are available for the properties of multicomponent mixtures, 
as well as for the coefficient of thermal diffusion [Hirsch- 
felder et al., 1964, Chapter 8]. From these formulas we see 
that viscosity and thermal conductivity are closely related and 
independent of the pressure; the seff-diffusivity is inversely 
proportional to the pressure and has a stronger temperature de- 
pendence than the other two properties. The formulas for vis- 
cosity and diffnsivity, although derived for a monatomic gas, 
can be applied to a polyatomic gas; however, the thermal con- 
ductivity formula has to be modified appreciably for polyatom- 
ic gases [I-Iirsclafelder et al., 1964, Chapter 8]. 

For teaching purposes, the "linearized Boltzmann equation" 

(also called the "Krooked Boltzmann equation") can be recom- 
mended [Bhatnagar et al., 1954; Gross and Jackson, 1959, see 
also Vincenti and Kruger, 1965, Chapter X; Ferziger and Kaper, 
1972, Chapter 15]. This equation can be solved relatively easi- 
ly, and beginners can get a good understanding of the phy- 
sical processes involved. 

Rigorous kinetic theories for dilute polyatomic gases, dense 
monatomic gases, and monatomic liquids have been develop- 
ed during the last several decades, but these are extremely 
complex, and progress has been slow. 
1,-4. Polymeric Liquids 

Polymer molecules are characterized by their enormous di- 
versity (chain molecules, ring molecules, star-shaped mole- 
cules, and many more) and their very high molecular weight. 
Whereas gas molecules can be satisfactorily idealized as mass 
points, in the statistical mechanics of polymer molecules it is 
essential t o  take into account the extension of the molecules 
in space and their many internal degrees of  freedom. Most 
of  the kinetic theories developed so far have been for "bead- 
spring" models, in which the polymers are depicted as collec- 
tions of  mass points ("beads") interconnected by "springs", 
with the connectivity so chosen that the molecular architec- 
ture is described in whatever detail is deemed essential. To 
date much effort has been expended on "dumbbell" models-- 
two beads connected by one spring; despite their simplicity, 
they describe the salient features of  polymer molecules need- 
ed for describing rheological properties: orientability and ex- 
tensibility. 

In developing the kinetic theory for the bead-spring models, 
it is necessary to find the differential equation from which 
the one-molecule distribution function may be obtained. Be- 
cause of the large number of degrees of freedom the equa- 
tion for the distribution function will involve many variables 
and will hence be impossible to solve (except for the dumb- 
bell models and a few others). For polymeric liquids it will 
also be necessary to find the two-molecule distribution func- 
tion, and virtually nothing is known about this at present. 
We do, however, have formal expressions for the fluxes in 
terms of the one- and two-molecule distribution functions (i. 
e., expressions analogous to Eqs. (15) to (17)) [Curtiss and 
Bird, 1996a]. In Fig. 2 we show what the contributions are 
to the fluxes of mass, momentum, and energy as given by 
that theory and a pictorial description of the mechanisms 
for transport. With the bead-spring models some successes 
have been achieved in describing the rheological properties 
of polymers (non-Newtonian viscosity, normal stresses, com- 
plex viscosity, stress relaxation, elongational flow, etc.)[Bird, 
et al., 1987b]. For the simplest models it has even been pos- 
sible to obtain rheological constitutive equations, that is, ex- 
pressions for the stress tensor in terms of the salient kine- 
matic tensors. Relatively little has been done on the thermal 
and diffusive properties [Curtiss and Bird, 1996a, b, 1997]; the 
kinetic theory has shown that the fluxes of  mass and heat de- 
pend on the velocity gradients in the fluid, but there are al- 
most no experimental data to support the theory. 

Because of the formidable mathematical problems encoun- 
tered in the use of  statistical mechanics to obtain the trans- 
port properties of polymeric liquids, researchers have recent- 
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Mechanisms contributing 
to the molecular fluxes 

Trtmspoa acrou plane ~ j ~ _ [  
when a bead crosses the Ja ~,~t) ~,,l(t) 
plane 

Transport associated ~(#) qt#) 
with the tensions in the ---  
springs 

Transport associated ~ r  
with unequal external 
forces exerted on the beads 

r%g 
Transport associated 0 ~ . .  
with the interactions 
between two 
different molecules 

. . _  if(,) q(.) 

__. ff(o q(d) 

Fig. 2. Mec~nkms for transport across a plane for bead-spring 
models of polymers. 

ly turned to the use of stochastic simulations, and consider- 
able success has been achieved by these "Brownian dynamics 
techniques" [Ottinger, 1996, Chapters 4-6]. Here one lets the 
computer follow the motions of a typical molecule exposed 
to velocity, temperature, or concentration gradients, and then 
by a statistical averaging procedure ultimately obtains the molec- 
ular fluxes in the system. 

2 . T H E  M I C R O S C O P I C  V I E W P O I N T  

We now turn to a discussion of the transport phenomena 
equations as developed from the continuum point of  view. 
To derive the equations of change we write conservation laws 
over a "control volume" within the fluid. In doing this it is 
necessary to account for the flux of mass, momentum, an- 
gular momentum, and energy across the surface of the con- 
trol volume. These entities are transported by two mechanisms: 
by the motion of the fluid (convective transport) and by the 
motion o f  the molecules with respect to the fluid velocity 
(molecular transport). 

V 

dS 

Fig. 3. The vector v is the fluid velocity vector at some point 
P in 3-dimensional  space. The  unit vector n is perpen- 
dicular to a differential surface element dS. The  re- 
gion on the n-vector side o f  the surface is referred to 
as the plus re#on, and the other is called the m/nus 
region. The component  o f  v in the n direction is (n- v), 
and the vo lume rate of  f low from the minus side to 
the plus side through dS is (n-v)  dS. 

An element of  surface dS with unit normal vector n is 
shown in Fig. 3; the fluid is flowing through this surface with 
a velocity v. For a mixture, v is the mass-average velocity, v 
=Edo~v~, in which ca, is the mass fraction of species a and 
v~ is the velocity of  species r The side of the surface dS 
where the arrow is drawn is called the "plus side", and the oth- 
er is the "minus side'. The terms "plus material" and "mi- 
nus material" refer to the fluid material on the two sides, 
2-1. The Convective Fluxes 

We have to consider the transpor~ of both scalar and vector 
quantifies. We use the symbol B to represent some scalar quan- 
tity per unit volume; examples of scalar quantities are: fluid 
density p (mass/volume), concentration p~ (mass of species od 

volume), kinetic energy per unit volume �89 2 = lp(v"  v), in- 
^ 

ternal energy per unit volume pU, and potential energy per unit 
volume pi~. We use the symbol B to represent a vector quan- 
tity per unit volume; examples of this are: linear momentum 
per unit volume pv and angular momentum per unit volume 
[ r  • ,or]. 

The volume rate of flow of fluid across dS from the minus 
side to the plus side is (n. v)dS. Then the rate of flow of  B 
(with dimensions of (---)/volume) across dS is (n-v)BdS with 
dimensions of  (...)/time. When we divide this by dS we get 
(n-v)B=(n.vB), which has dimensions of (--.)/(area)(time) and 
which gives the rate at which the scalar quantity is being tran- 
sported by convection from the minus side of the ~ f a c e  to the 
plus side of dS., The vector quantity vB is then referred to 

"~,~X �84 

: - % ,  

V 

X 

Fig. 4. 2~nree mutually p e ~  differential surfaces, each 
with area dS, perpendicular to the three coordinate di- 
rections; the unit vectors in the x-, y-, and z-coordi- 
nate directions are ~ ,  ~ and ~ respectively. The fluid 
velocity is v at the point P in a three-49men~nal space 
through which the fluid is flowing. ~ne flux of  a scalar 
quantity B across a plane perpendicular to the y-direc- 
tion is (~,.vB)=v,B, The flux of  the z-component of  a 
vector quantity B across the plane pe rpeml im~  to the 
x-directlon is (~.- vB- ~0=(~,~. : vB)=v~B~ 
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110 R.B. Bird 

as the "flux of B". The flux of B may also be written in 
terms of its components: vB=,Y.~vkB, where/~ is the unit vec- 
tor in the k-th coordinate direction. If one wants to know, in 
Fig. 4, what the flux of a particular quantity is across a plane 
perpendicular to the x-direction, this is obtained by taking the 
dot product of the unit vector in the x-direction with the flux: 
(~-vB)=v~B. 1"his is then called the flux of B in the x-direc- 
tion. The following vector fluxes will be important: 

pv 

Pa v 

lpvzv  

the (total) mass flux, 

the species mass flux, 

the kinetic energy flux, 

the internal energy flux, 

the potential energy flux. 

For a vector quantity, the rate of flow of B by convection 
across dS is (n. v)BdS. When this is divided by dS we get 
(n-v)B=[n-vB],  which is the rate at which the vector quan- 
tity is being transported by convection from the minus side 
of dS to the plus side. The tensor quantity vB is called the 
"flux of B", and it may be displayed in terms of its compo- 
nents as: vB=Zf-~/~v~Bk. If we want to know, in Fig. 4, what 
the flux of the y-component of B is across a plane perpen- 
dicular to the z-direction, this is obtained by (~,. vB./i/)=vzB r 
Note that the first subscript gives the direction of transport, 
and the second gives the component of the vector quantity 
being transported. Tensor fluxes that arise in transport phenom- 
ena are: 

v(pv)=pvv the momentum flux, 

v[r  • pv]=pv[r • v] the angular-momentum flux. 

The first of these teusors is symmetric and the second is not. 
To summarize: the rate of flow of any scalar quantity B 

(or any vector quantity B) across an element of surface dS 
with orientation n because of convective transport is obtain- 
ed by dotting n into the vector flux vB (or the tensor flux 
vB) and multiplying by dS. It should be emphasized that the 
scalar flux may be written vB or By, but that the tensor flux 
must in general be written vB and not By. 
2-2. The Molecular Fluxes 

The molecular fluxes account for transport of mass, momen- 
tum, and energy above and beyond the convective transport 
by the fluid motion. In their simplest form, these fluxes are 
given as linear relations involving the concentration, veloci- 
ty, and temperature gradients. These equations are usually 
associated with the names of Fick, Newton, and Fourier re- 
spectively. The flux expressions are sometimes inappropriate- 
ly referred to as "laws". They are just empirical proposals, 
which, for a wide range of materials over wide ranges of con- 
ditions, have been found experimentally to be valid. We sum- 
marize them here [BSL, Eq. C of  Table 16.2-1, Eq. 18.4-1, 
Eq. 18.4-2]: 

Mass Flux: JA =--P~):~.B VO)A, (22) 

Momentum Flux: - =  p 8- /z(Vv + (Vv) ' )  + ( 2~-/z- rl(V.v)8 , 
-I (23) 
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Heat Flux: q = -  kVT + ~ e " M ~ .  (24) 

In Eq. (23) the superscript " t "  indicates the transpose of a 
tensor quantity. These expressions are incomplete, as is ex- 
plained in the discussion on nonequilibrium thermodynamics 
in w below. 

Eq. (22) is valid for binary systems only and is sometimes 
called ~Fick's (first) law of diffusion'. The quantity 1)~, with 
units m2/s, is the d/flus/v/ty of the system A-B (A and B be- 
ing two chemical species), l ick's law states that a mass flux 
results from a gradient in the mass fraction ~ .  The expres- 
sions for the mass fluxes in systems with N species (with N> 
2) are more complicated, because each species flux depends 
on all the concentration gradients in the fluid, with � 8 9  1) 
diffusivities/)o~ For dilute monatomic gases the equations for 
mnlticomponent ordinary diffusion are known to be given by 
the Maxwell-Stefan equations, 

Vx a = ~ x~2),~ / J/3 J a  ), ~. , -P~-P~J  a = 1 , 2  . . . .  N. (25) 

Here x~ is the mole fraction of species ~ and pa is the mass 
concentration of c~ Equations of this form are often used, ap- 
parently with some success, for compressed gases and for liq- 
uids [Hirschfelder et al., 1964; Bird et al., 1960; Lighffoot, 
1974; Taylor and Krishna, 1993]; a similar equation has also 
been obtained for polymeric liquids [Curtiss and Bird, 1996b]. 

Eq. (23) is a generalization of "Newton's law of viscosity" 
and the establishment of the tensorial form is discussed in many 
textbooks [Axis, 1962, w to w Batchelor, 1967, w 
Whitaker, 1968, w It contains two coefficients: the v/scos/ty 
~t and the dilatational viscosity r (or bulk viscosity), both with 
units kg/m. s or Pa.s. The term "dynamic viscosity" should 
not be used for/a, since this term has a different meaning in 
linear viscoelasticity. Also it is misleading to refer to /z as 
the "shear viscosity", since, in the equation of motion,/z may 
arise in terms describing elongation or dilatation. The dilata- 
tional viscosity r is zero for dilute, monatomic gases, accord- 
ing to the Chapman-Enskog kinetic theory [Chapman and Cowl- 
ing, 1970; Hirsctffelder et al., 1964]. For polyatomic gases it 
is not zero and is important in sound transmission [Landau and 
Lifshitz, 1987, Chapter VIII]. It is also important for liquids 
containing gas bubbles, when treating the two-phase system 
as an equivalent one-phase system [Batchelor, 1967, pp. 253- 
255]. The p in Eq. (23) is the thermodynamic pressure; that 
is, it is considered to be the same function of density, tem- 
perature, and composition as for the fluid at equilibrium. Note 
that the momentum-flux tensor for the Newtonian fluid is 
symmetric, so that ~ - - ~ .  

Eq. (24) consists of two terms. The first term (called "Fou- 
fiefs law of heat conduction") states that heat is transported 
because of a temperature gradient, and the proportionality co- 
efficient k is called the thermal conductivity, with units of W/ 
mK. The second term describes the heat transport by diffusion- 
al processes, being the sum of__products of  mass fluxes and 
the partial specific enthalpies (I-IdM,,). In some high-tempera- 
ture systems, one should also add to the heat-flux vector an- 
other term accounting for radiative energy transfer [Sampson, 
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1965; Sparrow and Cess, 1966; Pornraning, 1973]. 
The molecular fluxes in Eqs. (22) to (24) obey the same 

sign conventions as the convective fluxes. That is, (n..h) is 
the mass flux from the minus side to the plus side across a 
surface of unit area with normal unit vector n, and (n. q) is 
the heat flux across a surface of  unit area in the same direc- 
tion. Similarly the momentum flux is given by In.z] .  This 
quantity may also be interpreted as the force exerted by the 
minus material on the plus material across a surface of unit 
area with normal unit vector n. If at that surface the fluid is 
flowing with a velocity v, then the rate of doing work by 
the minus material on the plus material will be the force times 
the velocity or ([n.x].  v), which may also be written as (n. 
[z-v]). 

The molecular fluxes may be written in component form 
in the same way as the convective fluxes. In particular, the 
momentum flux tensor is a = ~ ,  in which ~ is the flux 
of k-momentum in the positive j-direction. It may also be in- 
terpreted as the force in the k-direction on a unit area perpen- 
dicular to the j-direction, this being the force exerted by the 
minus material on the plus material. 

The notation used for the convective and molecular fluxes 
is summarized in Table 1. The sign conventions for the con- 
vective fluxes are generally agreed upon, as are those for the 
mass-flux vector and the heat-flux vector. In kinetic theory and 
transport phenomena it is usual to use the sign convention 
for z given above, so that all three molecular fluxes obey the 
same sign convention that is used for the three convective 
fluxes [Bird et al., 1960; Waldmann, 1958; de Groot and Ma- 
zur, 1962; Chapman and Cowling, 1970; Ferziger and Kaper, 
1972; Baird and Collias, 1995]. An additional advantage is 
that compression is regarded as positive, in agreement with 
the accepted sign convention in thermodynamics [note that x 
and p,$ have the same sign in Eq. (23)]. On the other hand, 
in fluid dynamics and elasticity it is conventional to define 
a total stress tensor o in such a way that [n. ~r] is the force 
on a unit surface with normal unit vector n, the force being 
transmitted from the plus material to the minus material. Thus 
a = - o .  This difference in convention causes no real problems 
as long as one keeps in mind the physical significance of the 
sign convention being used. 

In solving transport phenomena problems, experimental val- 
ues for the transport properties and equation of state should 
be used whenever poss~le. Data on viscosity and thermal con- 
ductivity for pure fluids can be found in a variety of hand- 
books, but data on mixtures are more difficult to find. Exper- 
imental data on binary diffusivities are not particularly plen- 
tiful, and those for multicomponent diffusion are quite scarce 
[see, for example, Landolt-BOmstein, 1952; Reid, et al., 1987; 
Vargaflik, 1983; Yaws, 1995; Stephan and Heckenberger, 1988; 
Rutten, 1992]. Two important sources of information are 

Table 1. The convective and molecular fluxes 

Entity being transported Convective flux Molecular flux 
Mass of species c~ pay j,~ 
Momentum pvv x=  p~+ lr 
Energy lpv2v+p0 v q 

the Journal of Physical and Chemical Reference Data, and 
the data bases maintained by the Chemical and Physical Prop- 
erties Division of the National Institute of Science and Tech- 
nology. 

In the absence of data, some help can be obtained from ex- 
perimental correlations based on the principle of  correspond- 
ing states [BSL, Figs. 1.3-1, 1.3-2, 8.2-1, 16.3-1]. For dilute 
gases and gas mixtures, respons~le estimates can be made us- 
ing the Chapman-Enskog kinetic theory of gases, along with 
a realistic intermolecular force expression [Hirschfelder et 
al., 1964; Waldmann, 1958]. For liquids, the theory is much 
less well developed, and empiricisms have to be resorted to. 
Some assistance regarding theory and experiment can be ob- 
tained from reviews of the literature [Millat et al., 1996]. 
2-3. Conservation Laws Leading to the Equations of Change 

In this section we give the derivation of the principal par- 
tial differential equations needed for formulating transport phe- 
nomena problems. These are the four equations of change 
based on the principles of conservation of mass, momentum, 
energy, and angular momentum. The derivations are given here 
by applying the conservation laws to an arbitrarily chosen, fix- 
ed volume in space (the "control volume") through which any 
kind of finid--Newtonian or non-Newtonian-is flowing (see 
Fig. 5). The equations can also be derived by applying the 
conservation laws to an arbitrary material element of fluid 
as it proceeds through space undergoing deformation. In eith- 
er case one arrives at the equation of continuity, the equa- 
tion of motion, the equation of  energy, and the equation of 
angular momentum. Here we give the equations in terms of 
the molecular fluxes, and in Section 2.6 the equations are 

v 

Ja 

Hg. 5. An arbitrary control volume V, fixed in space, through 
which a fluid mixture is flowlmg. At each point on the 
sm$aee S there is an outwardly d~eaed unit normal vec. 
tor n. The region hmkle V is the "minus region", and the 
reglon outslde V is the "l~lUS regiod.  2]~e mass rate of 
flow of  substance a leaving the volume through the sur- 
face ekmem dS by convection is p.(n-v)dS, where v is 
the mass-average velocity of the fluid. The mass rate 
of flow of a leaving the volume through dis by diffusion 
is (n-j~)dS. The force exerted by the minus material 
on the plus material through dS is [n-z]dS. 
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given in terms of the transport properties. 
a. The Equations of Continuity 

First we apply the law of conservation of mass for spe- 
cies a to the control volume in Fig. 5. This law states that 
the mass of species a within the volume V increases because 
of the addition of a across the surface S by convection and 
by molecular motion (i.e., by diffusion), and because of pro- 
duction of a by Chemical reaction. Mathematically this is writ- 
ten as follows: 

dSvPadV=-]s(n.p,~v)dS-Is(n.ja)dS+IvradV, (26) 

in which r,, is the rate of production of mass of species A 
per unit volume by chemical reactions. On the left side, the 
time derivative may be taken inside the integral, since the 
volume V is fixed. The two surface integrals on the right 
side may be rewritten as volume integrals by using the Gauss 
divergence theorem (see Eq. (88)). This gives 

O Iv  o v-_-Ivs. oov v- Ivs.j v + Ivr V. (27) 

Then, since the volume V was arbiWar~y chosen, the integrands 
may be equated to give 

~---p,~ = -  (V �9 O,~v) - (V �9 j~) + ro, a = l ,  . . . .  (28) 2 N. 

This is the species equation of continuity. For nonreacting 
systems, the kinetic theory of gases leads to the same result, 
but without the last term [see Eq. (12)]; similarly the kinetic 
theories of liquids and polymers give Eq. (28) [Bearman and 
Kirkwood, 1958; Curtiss and Bird, 1996b]. When all N equa- 
tions are added, and when use is made of the relations Zap,,= 
p, X,j~--0, and Zd~--0, we obtain 

~3---p =- (V-  pv), (29) 

which is the equation of continuity for the fluid mixture. If 
it can be assumed that the fluid density is constant, Eq. (29) 
becomes simply (V-v)--0. 
b. The Equation of Motion 

We next apply the law of conservation of momentum to 
the control volume V in Fig. 5. This states that the linear mo- 
mentum within the volume V increases with time because of 
the addition of momentum by convection and by molecular pro- 
cesses, and also because of the effect of the external forces 
acting on the individual species. In mathematical formalism 
this becomes 

-Is ~ Is ' . s +  I (30) 
in which g<, is the force per unit mass acting on species 
Throughout we exclude the possibility of magnetic Lorentz 
forces. Once again the time-derivative operator can be mov- 
ed inside the integral, and the two surface integrals on the 
right can be converted into volume integrals, by using the 
Gauss divergence theorem as applied to tensors [BSL, Eq. (A. 
5-3)]. When the integral signs are removed, we then get 

~O---pv = - [V .  pvv] - [V. x] + Y.,,odga, (31) 

which is the equation of motion for the fluid mixture. If all 
species have the same force per unit mass acting on them 
(as would be the case if gravity is the only external force), 
or, if there is but one chemical species in the fluid, the last 
term on the right side is just pg. The kinetic theory of dilute 
monatomic gases leads also to Eq. (31), as seen in Eq. (13), 
and the kinetic theory for monatomic liquids also gives Eq. 
(31) [Irving and Kirkwood, 1950]. The kinetic theory of po- 
lymers leads to an equation that differs from Eq. (31) in the 
last term; also this theory gives a contribution to x associated 
with the external forces that is not suggested in continuum 
mechanics derivations [Curtiss and Bird, 1996a, w and Ap- 
pendix A]. When there are conflicts between continuum me- 
chanics results and kinetic theory results, it is clear that the 
postulates tacitly made in the continuum theory may exclude 
some effects that the structural theories can explain. 

Furthermore, continuum arguments alone are not sttfficient 
for formulating the equations of  motion for the individual 
chemical species; it is possible to develop such equations by 
means of the molecular theories of monatomic gases [Chap- 
man and Cowling, 1970, Eq. 8.1-7], monatomic liquids [Bear- 
man and Kirkwood, 1958, Eq. 4.20], and polymers [Curtiss 
and Bird, 1996b, Eq. 21]. 
c. The Equation of Energy 

Next we turn to the application of the principle of con- 
servation of energy to the control volume V. This is, in fact, 
a statement of the first law of thermodynamics for an open 
system. It has to be assumed in this derivation that the in- ^ 
ternal energy per unit mass U is the same function of density, 
temperature, and concentration as that for equilibrium (From 
a molecular point of view the internal energy is the sum of 
the kinetic energies of all the constituent molecules pins the 
sum of all the intermolecular interaction energies). With these 
points in mind, we can state the conservation law as follows: 
the kinetic and internal energy within V increases with time 
because of the net addition of these two kinds of energy 
across the surface, because of heat conduction across the sur- 
face, because of work done at the surface S by the fluid as it 
moves across the surface, and because of work done against 
external forces. In mathematical terms this becomes 

- fs(n- q)dS-~s(n- [--v])dS + ~vZ,,((ja+ p,v).  g,~lV. (32) 

After bringing the time-derivative operator inside the integral, 
converting the surface integrals to volume integrals, and re- 
moving the integral signs, we get 

O (1 v2 + l f l = _ ( V .  1 " 

--07- [x- v]) + Y-a(O~ + Oav)" ge), (33) 

which is the (tota/) energy equaO~n. If there is just one chem- 
ical species, or if the external forces acting on all chemical 
species are identical, the last term on the right side becomes 
just (v-pg). Eq. (33) is more general than Eq. (14), obtained 
from the kinetic theory of dilute monatomic gases, since it 
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accounts for the rotational and w"orational energies of the mole- 
cules, as well as for the intermolecular potential energies. Eq. 
(33) is not, however, sufficiently general to account for some 
additional effects that arise in the energy equation for poly- 
meric liquid mixtures [see Curtiss and Bird, 1996a, Eqs. (8.1) 
and (8.15)]. 
d. The Equation of Angular Momentum 

Finally we apply the law of conservation of momentum to 
the control volume V of Fig. 5. This states that the total an- 
gular momentum (including the flow angular momentum and 
the intemal angular momentum) within V increases with time 
because of the addition of angular momentum by convection 
and by molecular processes, and also becaue of the action of 
external torques and the torques associated with the extemal 
forces. When this is captured in mathematical form we have 

- _'[~ i n .  ~,]dS - _f~ [r x [n x ~r]]dS + fv[r x X,paga]dV 

+ SvgOP~tadv. (34) 
^ 

Here L is the internal angular momentum per unit mass, ~1, is 
the molecular flux of angular momentum, and t ,  represents 
the external torque per unit mass acting on species a. When 
this integral conservation equation is treated in a manner sim- 
ilar to that for the other conservation statements, we get the 
equation of change for angular momenaan in the form [Dahler 
and Scriven, 1961] 

(Nr x v] + pL) = --IV" (m[r  x vl + ml-)l - [V. ~l 

- [V. {r x x t  } t ] + [r x Y.,,o~ga] + E~oal a. (35) 

This equation has seldom been used, because of the lack of  
information about the molecular angular momentum flux and 
the internal angular momentum flux per unit mass. 
e. The Substantial Derivative Fonns of the Equations of Change 

The equations of change can be written in two ways: the 
3/~t-form (in which the changes at one point in 3-dimensioual 
space are described, as above) and the D/Dt-form (in which 
the changes following one material element of fluid are de- 
scribed). We now discuss the relation between these two forms 
of the equations. 

To begin with, there are two ways to describe fluid motion: 

(a) In the Eulerian description, we specify the fluid velocity 
at all locations r in space for all times t. That is we describe 
the motion by giving v(r, t). 

Co) In the Lagrangian description, we specify the locations 
of all fluid particles for all times t. If a fluid particle is lo- 
cated at position r '  in space at some past time t', and if that 
same particle is located at r at the current time t, then the 
motion of a fluid particle is given by the function r=-r(r', t', t); 
that is the location of the fluid particle r', t' will be at r at 
time t. Note that r', t' is used as a "particle label". [We use the 
term "fluid particle" for a tiny "lump" of the fluid within the 
continuum and not to an individual molecule.] 

The velocity of a fluid particle at time t is given by 

ve(f  , t', t) = ~-r(r', f, t). (36) 

That is, we differentiate the particle position r with respect 
to the time t for the given particle r ' ,  t' (that is, we take 3/3t 
holding r', t' constan 0. The fluid velocity at r at time t is ex- 
actly the same as the fluid particle velocity at the same point, 
so that 

v e (f, t', O = v(r, t). (37) 

The fact that there are two ways of describing fluid motion 
leads to two kinds of time derivatives: we can describe how 
a quantity is changing at a fixed position in space (the par- 
tial derivative 3/&, in which r is held constant), or we can 
describe how some quantity changes at a fixed particle as it 
moves through space (the substantial der/vat/ve D/Dr, in which 
the particle label r', t' is held constant). 

For example, for a scalar quantity, such as temperature, we 
can define two quantities: T(r, t) the temperature of the fluid 
at position r and time t, or Te(r', t', t), the temperature of the 
fluid at the fluid particle r', t' at time t. Since these quantities 
are numerically the same, we can write 

T~ (r', t', t) = r(r, t). (38) 

The time rate of change of the fluid temperature following 
some fluid particle, can be obtained by differentiating this 
equation with respect to t holding the particle label constant; to 
do this we use the chain rule of  partial differentiation to get 

3"r 

Since (3x/~t)e,r is the x-component of the fluid particle veloc- 
ity ve(r', t', t) which in turn is the x-component of the fluid 
velocity v(r, t), we may then write 

~ r  +vz (-~--]x,r., (40) 

Then ff we choose to designate (~Te/~t)e.: by the less cumber- 
some symbol DT/Dt, we have 

DT 3"1" - ~ ~(v. VT). (41) 

The operator D/Dr is called the substantial derivative (or ma- 
terial der/vaave) since it descnq~es how some quantity changes 
with time as one moves along with the substance (or material). 

Similarly, applying the chain rule of partial differentiation 
to Eq. (36) and following a similar procedure, we get for the 
substantial derivative of the velocity 

Dv _ ~v + [v �9 Vv]. (42) 
Dt ~t 

That is, the symbol Dv/Dt describes the change of the veloc- 
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ity of the fluid particle with time--that is, the fluid particle 
acceleration, Note that the operation [v-Vv] may also be writ- 
ten as (v-V)v; for some purposes it is useful to write it as 
�89 • IV • v]] 

To interconven equations between the D/Dr notation and the 
3/'Ot notation, the relations 

DX O_pX§ Lov. VX] ' (43) p - ~  = ~---pX+(pv- V X ) &  , and p~= 

are used for scalar (X) and vector (X) quantities respective- 
ly. The derivation of these relations requires the use of the 
equation of continuity. 

We now summarize the equations of continuity, motion, en- 
ergy, and angular momentum written in terms of the D/Dt no- 
tation. It should be emphasized that no assumptions are intro- 
duced in going from the ~/-0t forms of the conservation equa- 
tions to the D/Dt forms. 

Mass: Dp =-p(V-v), (44) 
Dt 

DOJa +r , Mass of Species u: p ~  =-(V.jo ) ~ (45) 

Dv Momentum: p--~- -- -[V. ~r] + Y.,,p~g~, (46) 

+ ZdO,, + p,v). g~). (47) 

D " Angular Momentum: p~-([r  • v} + L) =-iV- 3,] 

- [V - {r • ~t } t ] + [r x Zopogo.] + Xopat,r (48) 

These equations, together with the expressions for the fluxes 
and the thermal equation of state [~=~(~, T, ~ ,  o'2, o~, ...)] 
and the caloric equation of state [U=U(V, T, tot, o~, o~, ...)] 
form a complete set of equations which can be solved with 
the appropriate boundary conditions 
2-4. Other Equations of Change 

The five equations of change derived in the foregoing sec- 
tion, Eqs. (44) to (48), are based on the principles of conser- 
vation of species mass, total mass, momentum, energy, and 
angular momentum. In this section we present several addi- 
tional equations of change that can be obtained from the con- 
servation equations. 
a. The Equation of Change for Mechanical Energy 

By forming the dot product of the local fluid velocity vec- 
tor v with the equation of motion, we obtain the following 
result: 

D ( l v2 )  p ~ -  ( ~ - )  =-(V- [~:. v]) + Or: Vv) + Zp~v. g~, (49) 

which is the mechanical energy equation. For fluids with a 
single chemical species, or if the only external forces result 
from the gravitational field, the last term becomes p(v-g). If 
the gravity force acts in the negative z direction, and if the 
equation is further simplified by assuming steady state and 
an inviscid fluid, then the equation can be put into the form 

1 

Pv2v~ -p iv  x [V • v]] =-Vp - ~Vz, (50) 

Then we form the dot product of this equation with the unit 
vector in the flow direction, s=v/~, and write (s-V)=d/ds where 
s is the distance along a streamline. Then integration along 
the streamline from point "I" to point "2" gives the Bemou/// 
equation for the steady-state flow of a hypothetical inviscid 
fluid 

�89 v, 2) + ~P'~-dp * g(z2- zO=O. (51) 

equation interrelates the pressures, the velocities, and ele- 
vatious at points "1" and "2" along a streamline. This same 
equation can be found by integrating the energy equation for 
isentropic flow along a streamline [Bird and Graham, 1997]. 
b. The Equation of Change for Internal Energy 

When the mechanical energy equation of Eq. (49) is sub- 
tracted from the total energy equation, we obtain 

p-~-U= --{V. q ) -  (z: Vv)+ ~a(ja. go), (52) 

which is the internal energy equation. For fluids containing 
one chemical species only, the last term is zero. Note that the 
quantity (z:Vv) appears in Eqs. (49) and (52) with opposite 
signs, indicating that this quantity describes how energy is in- 
terconverted between the mechanical and internal forms. Note 
further that, if the sole external force is that of gravity, then 
the last term in Eq. (52) as zero. 
c. The Equation of Change for Temperature 

From Eq. (52) we may obtain an equation of change for 
enthalpy by replacing L~by ~,-(p/p). Then, it is assumed that 
FI can be expressed as a function of p, T, and composition, 
and furthermore that the standard formulas from equilibrium 
thermodynamics can be used [see BSL, w with these as- 
sumptions the enthalpy equation can be transformed into the 
following equation for the temperature, which is generally morn 
useful: 

^ DT 
pC. --6F =--(v. r Vv) + v) + 

_ 

~,~lnT~.,~ Dt +~  (t~M~)[(V'jQ-ra]" (53) 

in which the H~ are the partial molar enthalpies. For pure 
fluids the terms involving diffusion and chemical reaction are 
zero. The energy equation can be put into many other forms 
[BSL Tables 10,4-1 and 18.3-1]. 

For polymeric liquids it is not possible to make the step 
from Eq. (52) to Eq. (53), because the enthalpy is not simply 
a function of temperature, pressure, and composition [for a short 
discussion, see Christens~n, 1982, Chapter 3 for a continuum- 
mechanics treatment for linear viscoelastic fluids, and Curtiss 
and Bird, 1996a, Appendix C, for a lowest-order molecular 
treatment for nonlinear viscoelastic fluids]. 
d. The Equation of Change for Bulk Angular Momentum 

If the cross product is formed between the position vector 
r and the equation of motion, the following equation of 
bulk angular momentum results: 
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D x v] =_[V. {r x xt  } t] + pit x ~p~g~] + [e: a., ]" (54) p~- [ r  

Here e is a third-order tensor with components e ~ 2 ( i - j ) ( j -  k) 

( k - i ) .  Eq. (54) was obtained from the equation of motion 
without assuming the symmetry of x. If Eq. (54) is subtract- 
ed from the D/Dr form of the total angular momentum equa- 
tion in Eq. (35), one gets the equation of change for internal 
angular momentum. In this equation there appears the term 
-[e: Jr* ], that is, the last term in Eq. (54), but with the op- 
posite sign. Thus this term couples the internal angular mo- 
mentum equation to the bulk angular momentum equation and 
descn'bes the way in which the two forms of angular momen- 
tum are interconverted. For Newtonian fluids, for which x is 
known to be symmetric, the transpose sign may be removed 
from the symbol x, and, in addition, the term [e: ~t t ] is zero. 
Thus the assumption of a symmetric stress tensor implies that 
there is no interconversion between internal and bulk angular 
momentum associated with the flow, and Eq. (54) suffices 
for describing the angular momentum in a flowing system. 

The assumption of the symmetry of it has been normally 
made in discussion of fluid dynamics. The kinetic theories for 
monatomic gases [Chapman and Cowling, 1970], monatomic 
liquids [Irving and Kirkwood, 1950], and polymers [Curtiss 
and Bird, 1996a] indicate that the assumption of symmetric it 
is valid [for futher comments and literature references regard- 
ing the symmetry of the stress tensor, see Dahler and Scriven, 
1961; Dahler and Scriven, 1963; Condiff and Dahler, 1964; 
Dahler, 1965; Kuiken, 1995; Serrin, 1959, w 
e. The Equation of Change for Entropy 

For the sake of simplicity, in this subsection, only binary 
mixtures are considered. To obtain the entropy equation we 
need the following differential relation from equilibrium ther- 
modynamics: 

dO= TdS+ (p/p2)dp + [(~A/Ma ) - ((3n/1Vl 8 )dco a . (55) 

Here Ga is the partial molar Gibbs free energy. This is then 
substituted into Eq. (50). Then Da~Dt and Dp/Dt are eliminat- 
ed by using the species equation of continuity, Eq. (45) and 
the total equation of continuity (Eq. (44)). In this way, one 
obtains, after some rearrangement, the following entropy equa- 
t/on: 

p--~- =--(V-s) + g~, (56) 

in which s is the entropy flux and g~ is the entropy produc- 
tion, given by 

S= l ( q  -/.I~jA) = l ( q  -- ~ ( I ~ 4 a ) j ~  + (~a ga/Ma)ja), (57) 

gs = -- ((q -- I/aBJA )" ~ V T )  - (JA " +(V/'/AB + (g~ -- ga ))] 

Here ~- - (Ga /MA)-  (GBBVla), and the summations in Eq. (57) 
just extend over A and B. The entropy generation has been 
written in Eq. (57) as a sum of products of "fluxes" and 

"forces". This provides the starting point for the discussion 
of the nonequih'brium thermodynamics of the transport phenom- 
ena in w 
2-5. The Molecular Fluxes from Nonequilibrium Thermody- 
namics 

It was pointed out that the expressions given in Section 2- 
2 for the fluxes are incomplete. Here we show how nonequi- 
librium thermodynamics can provide additional insight into 
the formulas for the molecular fluxes. 

In extending thermodynamics from equilibrium to nonequi- 
librium systems it is necessary to add the following: 

a. It is assumed that locally, the standard relations among 
thermodynamic quantities for systems in equilibrium are also 
valid in nonequilibrium situations. We already used this idea 
in obtaining the equation of change for temperature from the 
internal energy equation. 

b. It is assumed that the relations between the fluxes and 
the driving forces can are linear, and that fluxes can result 
from all forces present. That is, (flux)~=Y-.~r~ (force),, in which 
the a~k are coefficients independent of the forces and fluxes. 

c. In Co) there is coupling between fluxes and forces only 
when the tensorial orders of the fluxes and forces are the same 
or differ by 2 (Curie's law). 

d. The matrix of coefficients tr~ is symmetric (in the absence 
of magnetic fields); the relations c r ~  are called the Onsager 
reciprocal relations. 

With these statements in hand we can now make use of the 
entropy production expression in (Eq. (58)). 

If we now make use of statements Co) and (c) above, and 
if we use the abbreviation Vg~=Vl~+(ga- gA), the expressions 
for the mass and energy fluxes are: 

1 VT, (59) h = --a1,+V~AB -- a12-~- 

1 _ a22 TI_yvT" q - ]~JA = -~2-~-V/Z~ (60) 

We solve the first equation for Vp~ and substitute it into 
the second to get 

q=  +~-1-1 a -  2 -  ~ ,  j T  2 �9 (61) 

The coefficient of VT in this equation is defined to be the 
thermal conductivity of the mixture (and not the coefficient 
of VT in the preceding equation). 

Next we develop the expression for the mass flux. S i n c e / ~  
is not a convenient variable, we consider it to be a function 
of co, t, T, and p, so that 

(62) 

Then Eq. (59) assumes the form 

h = -pl),~ [Vco a + krVT + kp Vp + kr(g e - g~ )1, (63) 

in which the coefficients ~)an, kr, k m and k~ are given by 
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pl)~= ctl' / 3#x~ / = at' l MRT(~ / (64) 
T t~176 J l,,r T t MAMllc'~176 J' 

- 

p~)~ kr cql + 
W W ~ ~1" ~p,a ~ T 2 '  

~11 IOn/JAB / = cgl'''~l [ ~t ] , (66) 

all (67) P~)'~ kr = T 

Here kr is the coefficient of thermal diffusion. In going from 
Eq. (59) to Eq. (63), al~ and a12 have been replaced by ~)~ 
and kr (the coefficients 1r v and k~- are just expressed in terms 
of ~)as and quantities derivable from the equation of state of 
the fluid). Eq. (63) shows that a mass flux can result from 
concentration gradients (ordinary diffusion), from temperature 
gradients (thermal diffusion or the Soret effect), from pressure 
gradients (pressure diffusion), and from external forces (forced 
diffusion) [cf. BSL, Eq. (18.4-15), and also Eqs. (18.4-8) to 
(18.4-11), where no derivations were given]. 

Next we return to the expression for the heat flux q given 
in Eq. (61). When we make use of the definition of thermal 
conductivity and an expression for the ratio alJau that can be 
obtained from Eqs. (64) and (65), the energy flux becomes 

= -kVT + ~-A M~- 

This shows that the heat flux contains one term associated 
with the temperature gradient (heat conduction), a term result- 
ing from diffusion, and a third (very small) term which is re- 
ferred to as the Dufour effect or the diffusion-thermo effect. 
This term does not appear in Eq. (24) [see also BSL, Eqs. 
(18.4-2) and (18.4-3), where no derivation was given; for in- 
depth discussions of the nonequilibrium thermodynamics as 
applied to transport phenomena, see de Groot and Mazur, 
1962; Landau and Lifshitz, 1987; Hirschfelder et al., 1964; 
for extensions to nonlinear transport phenomena see Beds and 
Edwards, 1994; Grmela and Ottinger, 1997; Ottinger and Grme- 
la, 1997; 0ttinger, 1998]. 
2-6. The Equations of Change in Terms of the Transport 
Properties 

When the conservation equations in Eqs. (44) to (48) are 
combined with the flux expressions in Eqs. (22) to (24), we 
get the equations that are to be solved for Newtonian fluids 
for the pressure, comtx~sition , velocity, and temperature. These 
are the starting equations that are used when one is doing a 
complete numerical solution of a problem, with the tempera- 
ture, concentration, and pressure dependence of all physical 
properties being taken into account. To get analytical solu- 
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tions to idealized problems, the equations are often simplifi- 
ed by assuming constant physical properties and possibly dis- 
carding unimportant terms (for example, the dissipation terms 
in the energy equation, when the viscosity and the velocity 
gradients are appropriately small). In this section we present 
some of the standard approximate equations that have been 
widely used in textbooks and research publications. 
a. The Equations for Diffusion 

Substitution of the expression for the mass flux in Eq. (22) 
into the species continuity equation gives for a binary mixture: 

Dto A 
= (V. P/)aB Vt0A) + rA" (69) 

However, if it is appropriate to assume that the density and 
diffusivity are constant, then Eq. (69) becomes the diffusion 
equation, 

DPA = ~)aB V2pA + rA. (70) 
Dt 

To solve this equation, many analytical methods are known 
and many solutions tabulated [Crank, 1956; Afis, 1975]. Chemi- 
cal reactions taking place in the body of the fluid and are de- 
scribed by the term rA are referred to as homogeneous chem- 
ical reactions; reactions occurring at a solid surface (such as 
a catalytic surface) are called a heterogeneous chemical reac- 
tions and are described by means of the boundary condi- 
tions. 
b. The Equation of Motion 

When the Newtonian expression for the stress tensor is sub- 
stituted into the equation of motion, and when it is assumed 
that the fluid has constant density and viscosity, the following 
equation is obtained for a pure fluid: 

Dv Dv p ~ - = - V p + g V h , + p g ,  or p - ~ - = - V P + g V 2 v ,  (71) 

in which ~--p+pt~is referred to as the rood/fled prexsure. Many 
solutions to the Navier-Stokes equations have been worked 
out [ViUat and Kravtchenko, 1943; Dryden et al., 1956; Berker, 
1963]. For flows with two nonvanishing velocity components, 
reformulation of the problem in terms of the stream function is 
often helpful [BSL, w Goldstein, 1938; Bird et al., 1987a, 
Table 1.4-1]. For some laminar flow problems analytical solu- 
tions can be obtained by asymptotic methods or by using 
scaling arguments [Leal, 1992]. 

If, in addition, it assumed that the viscous forces are neg- 
ligible, then Eq. (71) becomes Euler's equation of motion for 
inviscid fluids. 

p ~ -  = -VP + pg, (72) 

Many analytical solutions are known for this equation [Lamb, 
1932; Milne-Thompson, 1955; Fdsch, 1995]. 

For creeping flow (sometimes called Stokes flow) one can 
omit the left side of Eq. (71) and obtain 

0 = - V ~  +/aVZv, (73) 

which is the basis for low Reynolds number hydrodynamics 
[Happel and Brenner, 1983; Kim and Karrila, 1991]. This 
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equation, with specified boundary conditions, may be reformu- 
lated as a problem in the calculus of variations; this is referr- 
ed to as the Helmholtz-Korteweg variational principle [Lamb, 
1932; Bird et al., w 1987a; Carey and Oden, 1986]. 

By taking the curl of the Naxa'er-Stokes equation in Eq. (71), 
the equation for vorticity may be obtained in either of  two 
forms 

Dw _ [w. Vv] + vVZw, or Dw = [~.{Vv- Vv}] + vV2w, (74) 
Dt I)I 

in which w=[V • v] is the vort/c/ty vector and v is the kinemat- 
ic viscosity. Note that one-half the vorticity vector is just 
the local angular velocity of the fluid. In two-dimensional 
flows [w-Vv] vanishes, and the vorticity w satisfies a diffu- 
sion equation [Batchelor, 1967; Serrin, 1959, w The vortic- 
ity vector is used in defining the corotating coordinate frame 
that leads to the Jaumann derivative used in rheology [Bird 
et al., 1977, Chapter 7]. There are, however, other kinematic 
quantities that can be used to define rotating coordinate sys- 
tems for use in constructing rheological constitutive equations 
[see Wedgewood and Geurts, 1995]. 
c. The Equation of Energy 

For a pure fluid, insertion of Newton's law and Fourier's 
law (Eqs. (23) and (24)) into the energy equation, Eq. (26), 
gives 

p ~  DT =(V.kVT)_(Olnp~ Dp 
+ 4, (75) 

~, ~lnT )p D t  

in which O is the dissipation function, defined by 

[Vv + (Vv)* - 2 (V.  v)b'] + ~(V- v) 2. (76) 
2 ,  

Since, for Newtonian fluids, the dissipation function is a sum 
of squares, it is a positive quantity. It describes the irrevers~le 
conversion of mechanical energy into heat. The last term in 
the entropy equation (Eq. (58)) is the dissipation function di- 
vided by the temperature. 

If the thermal conductivity and fluid density are both con- 
stant, Eq. (75) simplifies to 

p ~  DT = k V2T + 4, (77) 
Dt 

and the terms containing (V-v) in the dissipation function 
vanish. If the viscous dissipation is sufficiently small that it 
can be neglected, Eq. (77) is identical in form to Equation 
(70) if no chemical reactions are occurring. The similarity of 
the two equations is the basis for discussions of analogies be- 
tween heat and mass ~ r t  problems. Many solutions of the 
heat conduction equation are available [Carslaw and Jaeger, 
1959; Leal, 1992]. 
d. Boundary Conditions 

All of the differential equations given in this section must 
be solved with boundary and initial conditions. Although the 
differential equations are generally agreed upon, the choice of 
boundary conditions can sometimes be controversial. The tea- 

son for this is that sometimes the physical or chemical situa- 
tions at the boundaries of the system may not be well un- 
derstood. 

In solving the Navier-Stokes equation it is customary to 
assume that the fluid ~clings" to the bounding surfaces, so that 
fluid velocity v is equal to the velocity of  the surface. This 
well-known "no-slip" boundary condition has been challeng- 
ed [Richardson, 1973]; the "no-slip" condition on smooth walls 
turns out to be equivalent to a "complete slip" boundary con- 
dition at a corrugated surface! For some problems, it may be 
possible to specify the sheafing force at the surface (the vis- 
cous normal stresses are zero for Newtonian fluids for any 
kind of flow, when the assumption of incompressibility is 
made). At a plane interface between two immiscible liquids, 
the usual interfacial conditions are that the fluid velocity 
and the normal component of the momentum flux are con- 
tinuous. At the interface between a liquid and a gas, it is of- 
ten assumed that there is no momentum transfer between the 
liquid and the gas. For the Euler equation of motion for the 
(fictitious) inviscid fluid the component of v normal to a fix- 
ed surface must be zero, but the tangential component is free 
to take on any value. 

For problems in nonisothermal flow, at the bounding sur- 
faces one can specify the temperature or the heat flux. At 
the interface between a solid and a fluid, in solving the heat 
conduction equation in the solid region, one may assume that 
the heat loss from the solid to the fluid is proportional to the 
difference between the solid surface temperature and the tem- 
perature in the bulk of the fluid, and the proportionality coef- 
ficient is called the "heat transfer coefficient". This is some- 
times referred to as Newton's law of cooling. 

For problems involving mixtures, one can specify the con- 
centration or the mass flux at the bounding surfaces. Also, 
one can specify the rate at which a material disappears at a 
catalytic surface when there is a heterogeneous chemical re- 
action. In addition, the diffusional analog of Newton's law 
of cooling can be used, with the coefficient of proportion- 
ality being referred to as the "mass-Can~er coefficient". In eva- 
porating systems, it is customary to assume that the concen- 
tration of the evaporated liquid in the gas phase is related to 
the equilibrium vapor pressure of the liquid; this "equilibrium 
at the interface" assumption can be questioned, particularly 
when rapid evaporation of a highly volatile liquid is involv- 
ed. 

For gases at low density, in the Knudsen region, it is not 
possible to use the boundary conditions that the velocity, tem- 
perature, and concentration in the fluid are the same as the 
corresponding quantities of the wall. Instead, one has to in- 
troduce the notion of  viscous slip, temperature slip, and dif- 
fusion slip at the surfaces. 
2-7. Polymeric Liquids 

Polymeric liquids pose a special problem for the chemical 
engineer, since they are non-Newtonian liquids; that is, they 
are not described by Eq. (23). From the viewpoint of  engi- 
neering calculations, probably the most important feature of 
these fluids is fact that in a steady shear flow the viscosity 
is found to depend very strongly on the velocity gradient. This 
can be described very easily by introducing empirical expres- 
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sions in which the viscosity depends on the velocity gradient 
(the generalized Newtonian models). The "power-law model", 
the "Eyring model", the "Carreau model", and many others 
have been widely used and are reasonably successful for de- 
scribing the shear stress in steady-state shear flows [BSL, w 
and w Bird et al., 1987a, Chapter 4]. But the non-Newto- 
nian viscosity is not the only property that comes into play 
in polymer processing operations. 

Even in steady-state shear flow (v~=~y, vy=0, v~--0) the gen- 
eralized Newtonian models do not describe the polymeric liq- 
uid behavior completely. It has been amply demonstrated ex- 
perimentally that in steady-state shear flow, the normal stresses 
z=, ~ ,  z= are in general not zero and not equal to each other 
[Lodge, 1964, Chapter 10; Bird et al., 1987a, Chapters 2 and 
3]. These normal stresses can be described by the Criminale- 
Ericksen-Filbey equation [BSL, Eq. 3.6-11; Bird et al., 1987a, 
Eq. 9.6-18]. But this equation is incapable of describing flows 
that are not steady-state shear flows. 

To describe the time-dependent response of polymeric liq- 
uids in motions with infinitesimally small displacement gra- 
dients, one can make use of linear viscoelastic models. These 
are of the form: 

"1~ + 51,i ~ '1" + ~ 1 ~-~ 'l" + . . . . .  ~0 (~r ~2 ~'~ ~r ~2 ~'~" ~r ' " " ], (78) 

in which ~-Vv+(Vv)* is the rate-of-deformation tensor, and 
the +... indicates that additional terms may be included, con- 
taining third and higher time derivatives. The ~, /~, --- are 
constants characteristic of the fluid with dimensions of  (time), 
(time) z, -.., and Oo is the zero-shear-rate viscosity. If all the 
constants but ;q are zero, the equation is the Maxwell linear 
viscoelastic model, and if all the constants save 2~ and ~ are 
zero, we have the Jeffreys linear viscoelastic model. The latter 
can describe qualitatively stress relaxation after cessation of 
steady-state shear flow, stress growth at the start-up of shear 
flow, creep, recoil, and a variety of other unsteady-state re- 
sponses-but only in motions that involve minuscule deforma- 
tion gradients. Moreover, it cannot describe the strong depend- 
ence of the viscosity on the velocity gradients, nor can it de- 
scribe the nonzero normal stresses in steady-state shear flow. 

To describe all the theological effects mentioned so far (non- 
Newtonian viscosity, normal stresses, and time-dependent re- 
sponses) some success has been achieved by rewriting the line- 
ar viscoelastic models in a corotating frame (a frame that ro- 
tates with the local instantaneous angular velocity w = l [ v x  
v]) and then transforming back to the fixed coordinate frame. 
When this is done for the Jeffreys model, we get 

- ~  ~ ( ' + - ~  -), 
*'+ ~l~-~- : - r /0[Y az-~-Y) (79) 

which is the corotational Jeffreys model. Here the operator 
D/Dr is the corotational or "Jaumann" derivative, defined by 

~)t l.)I 

for symmetrical ,. The reason for introducing the corotational 
derivatives is to insure that the resulting expression for the 
stress tensor will be "objective"--that is, it will have no un- 
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wanted dependence on the local rate of rotation in the fluid 
[Bird et al., 1977, Chapter 7]. Eq. (79) is found to have-qual- 
itatively--most of  the features needed for describing the rhe- 
ological response of polymeric liquids, but the model is not 
sufficiently good quantitatively to be used in engineering flow 
calculations [Bkd et al., 1977, w however, in view of the 
fact that only three parameters are involved (a zero-shear-rate 
viscosity and two time constants), the development of Eq. (79) 
must be regarded with some satisfaction. In the past several 
decades many attempts have been made to generate--empiri- 
cally-rheological equations containing the ideas of viscosity, 
elasticity, and objectivity, but which, with a small number of 
parameters, will be capable of quantitative fits of the available 
experimental data. Accounts of this quest have been given in 
a number of books, and no attempt is made here to discuss 
this extensive research field [Bird et al., 1987a, b; Larson, 
1988; Giesekus, 1994; Bird and Wiest, 1996]. 

The above-descrilxxl empirical development is a diffx:ult task 
because we are dealing with the generation of tensor rela- 
tions that must describe a very broad spectrum of theolog- 
ical phenomena. In order to give some better sense of direc- 
tion to the field, attempts have been made to use the kinetic 
theory to suggest likely forms for the tensor relations. We 
cite here just one example of an expression that comes from 
a nonlinear dumbbell model (the so-called "FENE-P model") 
which has received a lot of attention in the past decade as a 
reasonable subject for study in flow simulations. For a poly- 
mer solution at temperature T, in which the number density 
of  polymer molecules is n, the stress tensor is given as the 
sum of a solvent contribution (the solvent viscosity being ~,) 
and a polymer contribution as follows: 

�9 = ~, + ~p = -rls j,+ ~v, (81) 

in which, the polymer contribution is given by [Bird et al., 
1987b, w 

z~.+x,,(~-7~,- 1 " z + ~-{r., ~,-i'}) 

- ~L a ( r  v - nkTb')-D ln.______ZZ _ .nkTAn j,. (82) 
Dt 

Here ~1~-~/4H is a time constant, and Z=1+(3/b)[1 -tr(r~r3nkT)], 
where b=HQ~/kT is an "extensibility parameter'. The ~oead- 
spring" model parameters that enter into these quantities are: 
Qo=maximum extension of the dumbbell H=spting constant for 
the "spring", :=friction coefficient for a "bead" moving through 
the solvent. This equation contains a small number of adjust- 
able parameters, each one of which has a specific molecular 
significance. If one uses Eq. (82) to solve a fluid dynamics prob- 
lem, then one can get from the final results some additional 
information about molecular orientation and stretching. 

In current research programs algorithms are being develop- 
ed to solve the kinetic theory equations and the fluid dynam- 
ics equations simultaneously, usIng stochastic simulations 
for the kinetic theory and finite element methods for the fluid 
dynamics [Ottinger, 1996]. All of the subjects in this section 
are part of  the frontier developments and are covered in the 
Journal of Non-Newtonian Fluid Mechanics, the Journal of 
Rheology, and Rheologica Acta. 
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Heat added to the flow system from the 
surroundings 

Q 

Plane"l" ~ Plane "2" 

Mechanical work performed by the flow 
system on the surroundings via moving 
parts 

Fig. 6.A "macroscopic system", which may be all or a part  
of some large assembly of equipment. Application of 
conservation statements to this kind of system lead to 
the macroscopic, mass, momentum, angular momenmm, 
and energy balances. The macroscopic mechanical en- 
ergy balance, on the other hand, must be obtained by 
integrating the equation of change for mechanical en- 
ergy over the entire system. 

3. THE M A C R O S C O P I C  V I E W P O I N T  

We now consider a macroscopic system such as that shown 
in Fig. 6. The system is the fluid contained between the in- 
let pipe ( " f ' )  with cross-sectional area S~ and the outlet pipe 
C2") with cross-sectional area $2, the remainder of the sur- 
face being made up of fLxed surfaces St; furthermore there 
may be moving surfaces S= by means of which the system 
can do work on the surroundings at a rate W=. Heat may be 
added to the system at a rate Q through some of the fixed 
surfaces of the system. The directions of flow at the inlet 
and outlet are given by the unit vectors n~ and n2. For the 
purpose of this discussion we consider the fluid in the sys- 
tem to be a single chemical species; it is not difficult to ex- 
tend the discussion to multicomponent systems with chem- 
ical reactions [BSL, Chapter 22]. 

In establishing the macroscopic balances we make several 
assumptions: 

a. Over the surfaces of  the entrance and exit planes, it is 
assumed that the pressure, fluid density, internal energy, and 
potential energy do not vary. 

b. It is assumed that in the entry and exit pipes the fluid 
is moving parallel to the walls of the pipe, so that the fluid 
velocity vectors (or the time-smoothed velocity vectors in tur- 
bulent flow) are in the directions n~ and n2 at the inlet and 
outlet respectively. 

c. It is assumed that the contributions of the stress tensor T 
and the heat-flux q vector at planes "1" and "1' may be neglect- 
ed, because these quantities are normally small in comparison 
with other contributions. 

3-1. Macroscopic Balances Based on Conservation Laws 
When the. above assumptions are made, it is possible to 

write down directly the following statements of the laws of 

conservation of mass, momentum, angular momentum, and 
total energy [BSL, Table 15.3-1]: 

d (83) 
- - i n t o  t = W 1 --  W 2 
dt 

- F /  .s +mta g, (84) 

di " I  ,i>w2 = + plSl [r I x nl] - +p2S2 [r 2 x nz] 
< V I >  < V 2 >  

- T l _ s  + [rc x into, g], (85) 

In these equations w~--pt<vpS1 is the mass rate of flow at 
the entry plane, and a similar expression holds for the mass 
rate of flow at the exit plane. The quantities m,~,, P,~,, L~,, 
I~o,, --., are the total mass, linear momentum, angular mo- 
mentum, kinetic energy, -.- in the system, and g=-V~is  the 
acceleration of gravity (taken to be unvarying with time). 
The vectors F~s and T~s are, respectively, the total force 
and total torque exerted by the fluid (f) on the solid (s) sur- 
faces. The angular brackets imply averages over the cross- 
sections at the inlet and exit planes, and these averages arise 
because of the variation of the fluid velocity over the cross- 
section. The position vectors r ,  rz, and rc give the locations 
of the centers of  the entrance and exit planes and the loca- 
tion of the center of  mass of the system; the terms containing 
the position vectors are only approximate, inasmuch as these 
vectors are not included in the relevant averaging processes. 

These macroscopic balances can be written down directly 
by applying the conservation laws, but they can also be ob- 
tained by integrating the corresponding equations of change 
over the entire volume of the flow system, taking into account 
the fact that the volume of the system is changing with time, be- 
cause of the inclusion of moving mechanical parts. [Bird, 1957; 
Slattery and Gaggioli, 1962]. We do not gives these deriva- 
tions here, but, instead, illustrate the procedure in connection 
with the derivation of the mechanical energy balance in the 
next subsection. 
3-2. The Macroscopic Mechanical Energy Balance 

A macroscopic mechanical energy balance cannot be writ- 
ten down immediately, since it does not follow from a con- 
servation law. Instead, we begin with the equation of change 
for mechanical energy and integrate it over the flow system 
of Fig. 6 [Bird, 1957, 1993; Whitaker, 1989, pp. 90-93]. 

We start by rewriting the equation of change for mechan- 
ical energy (Eq. (49)) for a pure fluid in the O/-dt-form and by 
introducing the potential energy per unit mass ~ defined by 
the relation g=-V~. It is assumed that ~ is time-independent, 
so that the equation of continuity may be used to rewrite the 
mechanical energy equation as follows: 
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~ (1 2 / ~ ) = - (  V" + ~ l v /  

- 67. [x. vl) + (x: Vv). (87) 

We now want to integrate this equation over the entire vol- 
ume of a flow system. To do this, two integral theorems are 
needed, the Gauss divergence theorem for any vector func- 
tion A (x, y, z, t) and the Leibniz formula for differentiation 
of a three-dimensional integral of a scalar function f (x, y, z, 
t) [BSL, Eqs. (A.5-1) and (A.5-5)]: 

Gauss: Sv(o (V. A)dV = ~s(,)(n. A)dS, (88) 

Leibniz: d f(x y,z,t)dV= OfdV+ f(n.vs)dS , 
dt ~v(,) ' ~v(,) ~t ~s(t) (89) 

in which V(t) and S(t) are the volume and surface of the sys- 
tem, which may depend on time because of the moving parts, 
and Vs is the local velocity of that part of the surface which 
is moving. 

When Eq. (87) is integrated, the three-dimensional Leibniz 
formula is used on the first term and/he divergence terms are 
converted to surface integrals, and we get 

- Ss0)(n. [~r. vl)dS + ~v(o (n:: Vv)dV, (90) 

The surface S(t) consists of four surfaces: the fixed surfaces 
Sh on which both v and Vs are zero; the moving surfaces S,,, 
on which V=Vs, both being nonzero; the cross-sections of the 
entry and exit ports, $1 and $2, where Vs is zero, but not v. 

The term on the left of Eq. (90) becomes the time rate of 
change of the total kinetic and potential energies (K~,+~,) 
within the control volume, whose shape and volume are in 
general changing with time. We next consider seriatim the 
three terms on the right: Term (1) contributes only at the 
entry and exit ports, and this gives the influx and efflux of 

kinetic and potential energy pl<v~>S~ +pl<vl>~i~lS 1 and 

p2<v~>S2+02<v2>~2S2 The angular brackets indicate aver- 

ages over the cross-sections, and the subscripts "1" and "2" 
show that the quantities are evaluated at planes "1" and "2". 
Term (2) gives, at the entry and exit ports, the work done to 
force the fluid into the system and to force the fluid out of 
the system; it is customary to neglect the viscous forces and 
include here only the pressure forces, so that this term gives 
rise to the terms p~<v~>S~ and -pz<v2>S2. Term (2) gives no 
contribution on the fixed surfaces, but on the moving sur- 
faces gives the rate of  work  done on the surroundings by 
means of the moving parts Win. Term (3) may be split up 
into two parts-the part associated with the pressure, and that 
associated with the viscous forces--and these are given sym- 
bolic designations: 

E~ = -~v(,) (PS: Vv)dV = -fv(,) p(V- v)dV, (91) 

= -Sv(o (lr: Vv)dV, (92) E~ 

The quantity F~ is the rate of dissipation of mechanical en- 
ergy within the control volume and, for Newtonian fluids, is 
always positive, whereas F~ may be either positive or negative; 
however, Ec can be discarded if the assumption of incompress- 
ibility is made. 

When these various contributions are inserted into Eq. (90), 
we get finally for the macroscopic mechanical energy balance 

or  

- Wm - Ec - K,, (93) 

~-(X% + r = + ~'1 + w, 
<VI> 

-Wm -Er -E~.  (94) 

This is sometimes referred to as the engineering Bernoulli 
equation or the overall mechanical energy balance. This equa- 
tion is used together with the overall mass, momentum, an- 
gular momentum, and total energy balances for analyzing en- 
gineering flow systems [BSL, Chapters 7 and 15; Whitaker, 
1968; Bird, 1993]. The form of the mechanical energy bal- 
ance give in Eq. (94) is much to be preferred over those 
given in BSL, Eqs. 15.2-1 and 2; if the fluid can be regard- 
ed as incompressible, the term Ec may be discarded, as point- 
ed out above. 

If the macroscopic mechanical energy balance in Eq. (94) 
is subtracted from the total energy balance in Eq. (90), a ma- 
croscopic internal energy balance is obtained: 

d U ^ ^ dt TM = Ulwl - U2w2 + Q + Ec + F_, (95) 

This equation, which is an interesting relation among thermal 
quantities, cannot be written down immediately, inasmuch as 
there is no law of conservation o~f internal energy. 

It is clear from the derivation above that Eq. (94) is ob- 
tained fxom the law of conservation of momentum. In some 
textbooks it is stated (incorrectly) that the mechanical en- 
ergy balances is "an alternative form of the total energy bal- 
ance" ; indeed, some textbook authors have obtained Eq. (94) 
by subtracting Eq. (95) from the total energy balance in Eq. 
(90), failing to recognize that Eq. (95) cannot be written down 
from fast principles. 
3-3. The Macroscopic Balances for Steady-State Systems 

Frequently the macroscopic balances are simplified by as- 
suming time-independent flows and neglecting the change 
of velocity over the cross-sections at "1" and "~'. At the same 
time, it is convenient to generalize the balances by allowing 
for multiple entry and exit ports. We then get the following 
for the four conservation statements and the mechanical en- 
ergy balance: 
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Ewl - Ew2 = O, ( 9 6 )  

~(vtwl + plSOnl - ~'~-(V2W2 + p2S2)n2 + rata g = F/._.s, (97) 

E(VlW 1 + plSl)[rl • 111] - ~(v2w 2 + p2S2)[r2 x 112] 
+[rc • m,o, g] = Tf_s, (98) 

( 9 9 )  

-W,~ - F_r - E~ = 0. (10(/) 

Here Y.wt means a sum over all entry ports of the mass flow 
rates; ht is the height of the entry port above some arbitrarily 
chosen datum plane. The enthalpy that appears in Eq. (99) is 
obtained from the following equation: 

-n~ C~OT+J~, r dp, (1011 
P 

in which the symbols with a superscript "0" refer to an arbi- 
trary reference state. The integration paths must prescribed, 
since each integral may depend on both p and T. 

Eqs. (96) through (100) constitute a set of five equations 
which have to be solved simultaneously. Most textbooks (in- 
cluding BSL) do not emphasize sufficiently that the use of this 
set of equations usually requires some intuition (to decide 
which terms are important and which ones can be safely ne- 
glected), some additional information (such as heat-transfer co- 
efficients or friction factors), and perhaps some photographs 
or flow visualization in order to decide which terms may be 
safely neglected, or to estimate their value. 
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