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When our textbook [Bird, Stewart, and Lightfoot, 1960--
hereinafter referred to as BSL| was published there was a
general feeling in the profession that the book was overly
theoretical and that little or ever serious use would be made
of the equations of change. Because of the rapid development
of computers and numerical methods in the intervening time,
however, it is now possible to take a more fundamental view-
point in the solution of certain classes of problems. As a re-
sult, the subject of transport phenomena is being increasing-
ly used, not only in chemical engineering but in a variety of
scientific and engineering disciplines.

Through the years, the viewpoints of the authors of the a-
bove-mentioned book have evolved, and we have gradually
introduced new ideas into the teaching program at the Univer-
sity of Wisconsin. This review contains some topics not con-
tained in BSL, as well as some material from BSL presented
in a different way. Also a number of newer references are cit-
ed. Perhaps this review will be helpful to students and teachers.

For the most part the notation of BSL will be used here.
In writing dot, double-dot, and cross products, we use paren-
theses () to indicate operations that yield a scalar, brackets [ ]
for those that yield a vector, and braces { } for those that yield
a tensor. These enclosures further serve to show which quan-
tities are being operated on by the V-operator. For example,
the quantity [V - pvv] is a vector, and it is understood that the
V-operator involves differentiation of all three symbols to the
right of it. Similarly (x: Vv) and (V-pﬁv) are operations that
result in scalars. Since the above rules apply only if dot or
cross operations are involved, we may write either Vv or (Vv),
and v+w may be written either as (v+w). or as [v+w]. Vectors
are bold-face Roman letters, and tensors are bold-face Greek
symbols. The unit tensor is § with components §; (the Kronec-
ker delta) , and the unit vectors in the three coordinate direc-
tions are indicated by bold-face deltas with the appropriate sub-
script: &, 8,, &. The tensor £ is a third-order tensor, with
components £ = %(i ~j)j - kXk - i). In equations that are writ-
ten for multicomponent mixtures the various chemical species
are indicated with Greek subscripts ¢, B, ... unning from 1 to
N. In equations written specifically for binary mixtures, the Ro-
man subscripts A and B are used to designate the two chem-
ical species. A circumflex (*) over a symbol means that it is
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a quantity “per unit mass .

The subject of transport phenomena makes use of the con-
servation laws of physics: the conservation of mass, momen-
tum, angular momentum, and energy. These laws are taken
over without question. It is worth noting that the law of con-
servation of energy may be derived from the homogeneity
of time, the law of conservation of momentum from the ho-
mogeneity of space, and the law of angular momentum from
the isotropy of space [Landau and Lifshitz, 1960, Chapter 2;
Callen, 1985, §21-3].

These conservation principles may be applied to molec-
ular collisions at the molecular level (in the development of
kinetic theory), to an infinitesimal region within a fluid at the
microscopic level (in the continuum development of the equa-
tions of change), and to large pieces of equipment at the ma-
croscopic level (in the development of the macroscopic bal-
ances). However, at each level it is necessary to invoke some
empiricisms. At the molecular level, we have to postulate a
form for the intermolecular potential energy; at the microsco-
pic level, we need expressions for the fluxes in terms of the
transport properties, and at the macroscopic level, we need
empirical correlations for the transfer coefficients in terms of the
various relevant dimensionless groups characterizing the system.

It is also possible to speak of a mesoscopic level in which
a multiphase system is treated as a hypothetical continuum. For
example, a suspension of particles can be treated as a ficti-
tious fluid with a prescribed viscosity (or other rheological
properties). A solid containing inclusions of a second solid
phase can be treated as a fictitious solid with an effective
thermal conductivity. The flow through a packed bed or po-
rous medium can be described by some kind of spatially
smoothed equation such as Darcy's law. We do not enter
in to a discussion of such methods of description here [see
Brenner and Edwards, 1993, for a thorough presentation].

1. THE MOLECULAR VIEWPOINT

We begin by writing down the conservation laws for mole-
cules participating in binary collisions. Then we show how
this information is used in generating the equations of change
from the Boltzmann equation for dilute monatomic gas mix-
tures. It is seen that by-products of this derivation are the for-
mal molecular expressions for the fluxes of mass, momentum,
and energy. The derivation of the kinetic theory expressions
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for the transport properties for dilute monatomic gas mixtures
is then discussed. Finally, the molecular theory of polymeric
fluids is described.

1-1. Conservation Laws in Molecular Collisions

A rigorous description of molecular motions and collisions
requires quantum mechanics; however, classical mechanics is
usually adequate for use in kinetic theory, except for the light-
est of molecules (He and H,) at very low temperatures. In Fig.
1 we depict a collision between two homonuclear diatomic mo-
lecules, A and B, in a dilute gas, in the absence of chemical
reactions; we also show the coordinate system used to describe
the locations of the two atoms, “1” and “2", in the molecule
A by means of position vectors with respect to an arbitrarily
chosen origin.

We want to obtain relations between certain quantities be-
fore and after a collision. By “before a collision” we mean that
the two molecules destined to collide are sufficiently far from
one another, so that there is no intermolecular force felt be-
tween the molecules; similarly “after the collision” means that
the molecules have traveled far enough following their en-
counter so that the intermolecular forces are no longer felt.
Quantities after the collision are designated by primes.

() A collision between homonuclear
diatomic molecules
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(b) Position vectors for the atoms in
molecule A
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o Arbitrary origin fixed in space
Fig. 1. A collision between two homonuclear diatomic mole-
cules, in which mass, momentum, angular momentum,
and energy are conserved. Quantities after a collision
have primes on them.
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(a) According to the law of conservation of mass, the total
mass of the molecules entering and leaving the collision must
be equal:

m, +m; =m} +mp. 1)

Here m, and m; are the masses of molecules A and B. Since
there are no chemical reactions, the masses of the individual
species will also be conserved, so that

m,=m, and mz=mj. @

(b) According to the law of conservation of momentum the
total momentum of the molecules that are about collide must
equal that of the molecules after the collision, so that

My T, + My, T, + Mg Iy + Mg, I =

! . Y )
My Ty + M, T+ Ml T + My, th, 3

in which r, is the position vector for atom “1" of molecule
A, and r,, is its velocity. If we switch to the molecule center-
of-mass position vector r, and the relative position vectors Ry,
and R,;, and then recognize that R,,=— R, {with a similar re-
lation being true for the corresponding velocities), we get

myx, +mgly =m, I, +mgty. @

Here we have also used the fact that, for homonuclear diatom-
ic molecules, mM=mA2=%m,..

(¢) According to the law of conservation of energy, the en-
ergy of the colliding pair of molecules must be the same be-
fore and after the collision. The energy of a molecule con-
sists of the sum of the kinetic energies of the atoms and the
interatomic potential energy, ¢,, which describes the force of
the chemical bond that joins the two atoms “1” and “2" of
molecule A, and is a function of |ry,—r4,|. Therefore energy
conservation leads to

1 - 1 . 1 . 1 .
ST TF + My I + @ [+ g B + Mt + 6y =
2 2 2 2
Lot + tmi + o |+ Lmg i+ Loiniz + 6 |
2 1741 2 2 TA2 A 2 1781 2 ‘B2
©)
By switching to the coordinates for the center of mass and

the relative coordinates (and the corresponding velocities) we
get

1 . 1 .
(EmAr}+uAJ+[EmBr§+uB]=

L S | S

FIEL U+ | Smp Py |, ©6)

in which uA=23%m&Ri*+ ¢« is the sum of the kinetic energies
of the atoms referred to the center of mass of molecule A,
and the interatomic potential energy of molecule A. Thus we
split up the energy of each molecule into its kinetic energy
with respect to fixed coordinates, and the internal energy of
the molecule (which includes the vibrational, rotational, and in-
teratomic potential energies).

(d)Finally, the law of conservation of angular momentum
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can be applied to a collision to give

([rag XMy 1y I, XMy, 1)
+([1gy X mp; Tg, ] + [Tgr X Mpy 15, ])
= ([ry, X mygy i, ]+ [, Xmg, 1,
+([r; Xmg, Ty ] + [15, Xmp, 15, ). Y

Next we introduce center-of-mass and relative coordinates and
velocities and obtain:

(Iry Xmy ]+ 1)+ ([rp Xmyip] +1p) =
([rx Xm, T 1+ 1) +([rp Xmyiz]+1g), (8)

in which L=[R,; X msRe ]+ [Ra2 X mR,,] is the internal angu-
lar momentum of molecule A.

The conservation laws for the collisions of monatomic mole-
cules can be obtained from the results above as follows: Egs.
(1), (2), and (4) are directly applicable; Eq. (6) is applicable if
the internal energy contributions are omitted; and Eq. (8) may
be used if the internal angular momentum terms are discard-
ed [see §1.5 of Hirschfelder et al., 1964, for a discussion of
collisions between monatomic molecules].

1-2. Fluxes as Integrals over the Distribution Function

In applying kinetic theory (nonequilibrium statistical mech-
anics) to any kind of system, it is necessary to derive some
kind of equation for a distribution function and to know how
to solve it. For a dilute non-reacting monatomic gas mixture
[Chapman and Cowling, 1970, Chapter 3; Hirschfelder et al.,
1964, Chapter 7; Lifshitz and Pitaevskii, 1981, Chapter 1], the
relevant equation is the Boltzmann equation for f,(r, Io, t),
which is the probability density that at position r, and time
t, a molecule of species o will have a velocity r.:

of,  |. O of |_
S

Here g, is the force per unit mass acting on a molecule of
species a, and J, is a very complicated multiple integral term
accounting for the change in the distribution function result-
ing from molecular collisions; this term involves the inter-
molecular potential energy function and the details of the colli-
sion dynamics. The distribution function is normalized to the
number density of species & [ {1, Fo, t)dia=n,

Recently it has been shown [Curtiss, 1992a, b, c] that the
Boltzmann equation in Eq. (9) is incomplete in that it does
not account for the existence of “bound pairs” of molecules,
that is, pairs of molecules that orbit around one other; Curtiss
has shown how to correct the equation and to use the appro-
priately modified equation to compute the transport proper-
ties. The effect of this modification is important, however,
only at very low temperatures.

When Eq. (9) is multiplied by a molecular property y, and
then integrated over all molecular velocities, the general equa-
tion of change is obtained:

¥ (3 = W [, OV
5P () B o 3

3V .
+ (ga- arlJ = flovidia, (10)

in which the overbar indicates an average value defined as
follows:

Wt 0 = (/0 ) Wi A, £, (11)

Next, we let y, be successively m,, the three components of
M(fa— V), and Tm(ia—v)’, in which v is the mass-average
velocity of the fluid mixture. These three choices for y, in-
volve conserved quantities: mass, momentum, and energy; for
such quantities the collision term on the right side of Eq. (10)
can be shown to vanish [Hirschfelder, et al., 1964, §7.2], and
the equations of change for mass, momentum, and energy are
obtained:

gt‘pa=—(v'pav)_(v‘ja)’ (12)
S pv==[V-pwl-[V- 2+ Lobetic (13)

% (%p\ﬂ + %nkT) =— [V~ (%pv2 + %nkT)v] -(V-q
- (V . [ﬂ'- V]) + Za((ja + pav)' ga)v (14)

in which the molecular fluxes j» & and q are given as inte-
grals over the distribution function:

ja=ngm, (ia -v), (15)
x=Tnm, (G — V)Ea— V), (16)
4= S nam =V V). (17)

Note the similarity in the structures of these molecular fluxes
and those for the convective fluxes p,v, pvv, and %pv2 v ap-
pearing in the equations of change above.

The above discussion illustrates how one can begin at the
molecular level and obtain the equations of change, Egs. (12) to
(14), and at the same time gencrate expressions for the molec-
ular fluxes in terms of integrals involving a distribution func-
tion, Egs. (15) to (17). This same technique has been used for
monatomic liquids [Irving and Kirkwood, 1950; Bearman and
Kirkwood, 1958] and for polymeric liquids [Curtiss and Bird,
1996a, b, 1997]. For liquids the kinetic theory is much more
complicated because of the diverse mechanisms for transport
and because it is necessary to invoke distribution functions
for pairs of molecules, about which relatively little is known at
present. Nonetheless, the formal theories have been developed,
and these can be used with some confidence for further de-
velopments in the theory of liquids.

1-3. Molecular Expressions for the Transport Properties

To evaluate the fluxes for low-density gas mixtures an ex-
plicit expression for the distribution function f, (z, 1, t) is need-
ed, and this is obtained by solving the Boltzmann equation.

Korean J. Chem. Eng.(Vol. 15, No. 2)



108 R.B. Bird

The solution of this complicated integrodifferential equation
was one of the great triumphs of theoretical physics in the
first part of the twentieth century, and discussions of the details
are readily available [Chapman and Cowling, 1970; Hirsch-
felder et al., 1964]. For a system at equilibrium the solution
of the equation is just the well-known Maxwell-Boltzmann
distribution.

For nonequilibrium systems one expands the distribution
function in terms of the gradients of concentration, velocity,
and temperature. In this way expressions are obtained for the
coefficients associated with each of these gradients, that is,
the transport properties. The formal expressions were work-
ed out for multicomponent mixtures in mid-century [Curtiss
and Hirschfelder, 1949), and shortly thereafter exiensive tables
were prepared for estimating the transport properties by using
the Lennard-Jones 6-12 intermolecular potential, which accounts
for the attractive and repulsive forces between pairs of mole-
cules [Hirschfelder et al., 1964, §1.3]:

o5 (5]

Here ¢(r) is the intermolecular potential energy as a function
of the intermolecular separation r. The parameter ¢ is the max-
imum energy of attraction for the pair of molecules, and &
is the distance at which the potential energy is zero—the “colli-
sion diameter” .

The simplest formulas for the transport properties are those
for a pure dilute gas; in the lowest approximation (good enough
for most purposes) these are:

=)

Self-diffusivity: D= 3

8| n2y |lp ] 8| prci2,
Viscosity: 1= 15_5 ( “ﬂ’;ng ] (20
1

Thermal conductivity: k= E[ V7K J(i} 5 (5]#(21)
64| no’Q, ||M ) 4 (M

Here m is the mass of a molecule, T the absolute tempera-
ture, k Boltzmann's constant. The quantities Q and Q, are
functions of the dimensionless temperature kT/¢; the most up-
to-date tabulation of these functions is that based on Curtiss's
modified Boltzmann equation [Curtiss, 1992¢]. Similar formulas
are available for the properties of multicomponent mixtures,
as well as for the coefficient of thermal diffusion [Hirsch-
felder et al., 1964, Chapter 8]. From these formulas we see
that viscosity and thermal conductivity are closely related and
independent of the pressure; the self-diffusivity is inversely
proportional to the pressure and has a stronger temperature de-
pendence than the other two properties. The formulas for vis-
cosity and diffusivity, although derived for a monatomic gas,
can be applied to a polyatomic gas; however, the thermal con-
ductivity formula has to be modified appreciably for polyatom-
ic gases [Hirschfelder et al., 1964, Chapter 8].

For teaching purposes, the “linearized Boltzmann equation”

March, 1998

(also called the “Krooked Boltzmann equation”) can be recom-
mended [Bhatnagar et al, 1954; Gross and Jackson, 1959; see
also Vincenti and Kruger, 1965, Chapter X; Ferziger and Kaper,
1972, Chapter 15]. This equation can be solved relatively easi-
ly, and beginners can get a good understanding of the phy-
sical processes involved.

Rigorous kinetic theories for dilute polyatomic gases, dense
monatomic gases, and monatomic liquids have been develop-
ed during the last several decades, but these are extremely
complex, and progress has been slow.

14, Polymeric Liquids

Polymer molecules are characterized by their enormous di-
versity (chain molecules, ring molecules, star-shaped mole-
cules, and many more) and their very high molecular weight.
Whereas gas molecules can be satisfactorily idealized as mass
points, in the statistical mechanics of polymer molecules it is
essential to .take into account the extension of the molecules
in space and their many internal degrees of freedom. Most
of the kinetic theories developed so far have been for “bead-
spring” models, in which the polymers are depicted as collec-
tions of mass points (“beads”) interconnected by “springs’,
with the connectivity so chosen that the molecular architec-
ture is described in whatever detail is deemed essential. To
date much effort has been expended on “dumbbell” models--
two beads connected by one spring; despite their simplicity,
they describe the salient features of polymer molecules need-
ed for describing rheological properties: orientability and ex-
tensibility.

In developing the kinetic theory for the bead-spring models,
it is necessary to find the differential equation from which
the one-molecule distribution function may be obtained. Be-
cause of the large number of degrees of freedom the equa-
tion for the distribution function will involve many variables
and will hence be impossible to solve (except for the dumb-
bell models and a few others). For polymeric liquids it will
also be necessary to find the two-molecule distribution func-
tion, and virtually nothing is known about this at present.
We do, however, have formal expressions for the fluxes in
terms of the one- and two-molecule distribution functions (i.
e., expressions analogous to Egs. (15) to (17)) [Curtiss and
Bird, 1996a)]. In Fig. 2 we show what the contributions are
to the fluxes of mass, momentum, and energy as given by
that theory and a pictorial description of the mechanisms
for transport. With the bead-spring models some successes
have been achieved in describing the rheological properties
of polymers (non-Newtonian viscosity, normal stresses, com-
plex viscosity, stress relaxation, elongational flow, etc.)[Bird,
et al,, 1987b]. For the simplest models it has even been pos-
sible to obtain rheological constitutive equations, that is, ex-
pressions for the stress tensor in terms of the salient kine-
matic tensors. Relatively little has been done on the thermal
and diffusive properties {Curtiss and Bird, 1996a, b, 1997]; the
kinetic theory has shown that the fluxes of mass and heat de-
pend on the velocity gradients in the fluid, but there are al-
most no experimental data to support the theory.

Because of the formidable mathematical problems encoun-
tered in the use of statistical mechanics to obtain the trans-
port properties of polymeric liquids, researchers have recent-
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Mechanisms contributing
to the molecular fluxes
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Fig. 2. Mechanisms for transport across a plane for bead-spring
models of polymers.

(e)

Transport associated
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ly turned to the use of stochastic simulations, and consider-
able success has been achieved by these “Brownian dynamics
techniques” [Ottinger, 1996, Chapters 4-6]. Here one lets the
computer follow the motions of a typical molecule exposed
to velocity, temperature, or concentration gradients, and then
by a statistical averaging procedure ultimately obtains the molec-
ular fluxes in the system.

2. THE MICROSCOPIC VIEWPOINT

We now turn to a discussion of the transport phenomena
equations as developed from the continnum point of view.
To derive the equations of change we write conservation laws
over a “control volume™ within the fluid. In doing this it is
necessary to account for the flux of mass, momentum, an-
gular momentum, and energy across the surface of the con-
trol volume. These entities are transported by two mechanisms:
by the motion of the fluid (convective ransport) and by the
motion of the molecules with respect to the fluid velocity
(molecular transport).

ds n

Fig. 3. The vector v is the fluid velocity vector at some point
P in 3-dimensional space. The umit vector n is perpen-
dicular to a differential surface element dS. The re-
gion on the n-vector side of the surface is referred to
as the plus region, and the other is called the minus
region. The component of v in the n direction is (n-v),
and the volume rate of flow from the minus side to
the plus side through dS is (n-v) dS.

An element of surface dS with unit normal vector n is
shown in Fig. 3; the fluid is flowing through this surface with
a velocity v. For a mixture, v is the mass-average velocity, v
=Y 0.V in which @, is the mass fraction of species « and
v, is the velocity of species . The side of the surface dS
where the arrow is drawn is called the “plus side”, and the oth-
er is the “minus side”. The terms “plus material and “mi-
nus material” refer to the fluid material on the two sides.
2-1. The Convective Fluxes

We have to consider the transport of both scalar and vector
quantities. We use the symbol B to represent some scalar quan-
tity per unit volume; examples of scalar quantities are: fluid
density p (mass/volume), concentration p,, (mass of species o/
volumie), kinetic energy per unit volume %p\rz: %p(v-v), in-
ternal energy per unit volume pr, and potential energy per unit
volume pd. We use the symbol B to represent a vector quan-
tity per unit volume; examples of this are: linear momentum
per unit volume pv and angular momentum per unit volume
[rXx pv].

The volume rate of flow of fluid across dS from the minus
side to the plus side is (m-v)dS. Then the rate of flow of B
(with dimensions of (---)/volume) across dS is (n-v)BdS with
dimensions of (---)/time. When we divide this by dS we get
(n-v)B=(n-vB), which has dimensions of (---)/(area)time) and
which gives the rate at which the scalar quantity is being tran-
sported by convection from the minus side of the surface to the
plus side of dS.. The vector quantity vB is then referred to

Ve

Fig. 4. Three mutually perpendicular differential surfaces, each
with area dS, perpendicular to the three coordinate di-
rections; the unit vectors in the x-, y-, and z-coordi-
nate directions are §, 3, and & respectively. The fluid
velocity is v at the point P in a three-dimensional space
through which the fluid is flowing. The flux of a scalar
quantity B across a plane perpendicular to the y-direc-
tion is (§, - vB)=v,B. The flux of the z-component of a
vector quantity B across the plane perpendicular to the
x-direction is (&;- vB- &)=(6.4, : vB)=v,B..

Korean J. Chem. Eng.(Vol. 15, No. 2)
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as the “flux of B". The flux of B may also be written in
terms of its components; vB=X,.8v;B, where & is the unit vec-
tor in the k-th coordinate direction. If one wants to know, in
Fig. 4, what the flux of a particular quantity is across a plane
perpendicular to the x-direction, this is obtained by taking the
dot product of the unit vector in the x-direction with the flux:
(8.-vB)=v,B. This is then called the flux of B in the x-direc-
tion. The following vector fluxes will be important:

pv the (total) mass flux,

Pa¥ the species mass flux,
%p\ﬂv the kinetic energy flux,

va the internal energy flux,
p&v the potential energy flux.

For a vector quantity, the rate of flow of B by convection
across dS is (m-v)BdS. When this is divided by dS we get
(n-v)B=[n-vB], which is the rate at which the vector quan-
tity is being transported by convection from the minus side
of dS to the plus side. The tensor quantity vB is called the
“flux of B", and it may be displayed in terms of its compo-
nents as: vB=X3.88vB,. If we want to know, in Fig. 4, what
the flux of the y-component of B is across a plane perpen-
dicular to the z-direction, this is obtained by (§,-vB-§)=v,B,.
Note that the first subscript gives the direction of transport,
and the second gives the component of the vector quantity
being transported. Tensor fluxes that arise in transport phenom-
ena are:

v(pv)=pvv
v[r X pvl=pv[r X v] the angular-momentum flux.

the momentum flux,

The first of these tensors is symmetric and the second is not.

To summarize: the rate of flow of any scalar quantity B
(or any vector quantity B) across an element of surface dS
with orientation n because of convective transport is obtain-
ed by dotting » into the vector flux vB (or the tensor flux
vB) and multiplying by dS. It should be emphasized that the
scalar flux may be written vB or Bv, but that the tensor flux
must in general be written vB and not Byv.
2-2. The Molecular Fluxes

The molecular fluxes account for transport of mass, momen-
tum, and energy above and beyond the convective transport
by the fluid motion. In their simplest form, these fluxes are
given as linear relations involving the concentration, veloci-
ty, and temperature gradients. These equations are usually
associated with the names of Fick, Newton, and Fourier re-
spectively. The flux expressions are sometimes inappropriate-
ly referred to as “laws”. They are just empirical proposals,
which, for a wide range of materials over wide ranges of con-
ditions, have been found experimentally to be valid. We sum-
marize them here [BSL, Eq. C of Table 16.2-1, Eq. 18.4-1,
Eq. 18.4-2]:

Mass Flux: j, =-pD,;Va,, (22)
Momentum Flux: x=p §— (Vv +(Vv)t) + [%u— x)(V~v)5,
(23)
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Heat Flux: q=—kVT+ S(H,/M ). 249
a

In Eq. (23) the superscript “1" indicates the transpose of a
tensor quantity. These expressions are incomplete, as is ex-
plained in the discussion on nonequilibrium thermodynamics
in §2.5 below.

Eq. (22) is valid for binary systems only and is sometimes
called “Fick's (first) law of diffusion . The quantity D, with
units m’/s, is the diffusivity of the system A-B (A and B be-
ing two chemical species). Fick's law states that a mass flux
results from a gradient in the mass fraction @,. The expres-
sions for the mass fluxes in systems with N species (with N>
2) are more complicated, because each species flux depends
on all the concentration gradients in the fluid, with %N(N -1
diffusivities Do For dilute monatomic gases the equations for
multicomponent ordinary diffusion are known to be given by
the Maxwell-Stefan equations,

xaxﬂ Ja
Vx, = da | 1,2, N (25)

Here x, is the mole fraction of species &, and p, is the mass
concentration of a. Equations of this form are often used, ap-
parently with some success, for compressed gases and for lig-
uids [Hirschfelder et al., 1964; Bird et al., 1960; Lightfoot,
1974; Taylor and Krishna, 1993]; a similar equation has also
been obtained for polymeric liquids [Curtiss and Bird, 1996b)].

Eq. (23) is a generalization of “Newton's law of viscosity”
and the establishment of the tensorial form is discussed in many
textbooks [Aris, 1962, §5.22 to §5.24; Batchelor, 1967, §3.3;
Whitaker, 1968, §5.2]. It contains two coefficients: the viscosity
4 and the dilatational viscosity x (or bulk viscosity), both with
units kg/m-s or Pa-s. The term “dynamic viscosity” should
not be used for y, since this term has a different meaning in
linear viscoelasticity. Also it is misleading to refer to u as
the “shear viscosity”, since, in the equation of motion, y may
arise in terms describing elongation or dilatation. The dilata-
tional viscosity x is zero for dilute, monatomic gases, accord-
ing to the Chapman-Enskog kinetic theory [Chapman and Cowl-
ing, 1970; Hirschfelder et al., 1964]. For polyatomic gases it
is not zero and is important in sound transmission [Landau and
Lifshitz, 1987, Chapter VII]. It is also important for liquids
containing gas bubbles, when treating the two-phase system
as an equivalent one-phase system [Batchelor, 1967, pp. 253-
255). The p in Eq. (23) is the thermodynamic pressure; that
is, it is considered to be the same function of density, tem-
perature, and composition as for the fluid at equilibrium. Note
that the momentum-flux tensor for the Newtonian fluid is
symmetric, so that m, =7,

Eq. (24) consists of two terms. The first term (called “Fou-
rier's law of heat conduction”) states that heat is transported
because of a temperature gradient, and the proportionality co-
efficient k is called the thermal conductivity, with units of W/
mK. The second term describes the heat transport by diffusion-
al processes, being the sum of products of mass fluxes and
the partial specific enthalpies (H.,/M «)- In some high-tempera-
ture systems, one should also add to the heat-flux vector an-
other term accounting for radiative energy transfer [Sampson,
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1965; Sparrow and Cess, 1966; Pomraning, 1973].

The molecular fluxes in Egs. (22) to (24) obey the same
sign conventions as the convective fluxes. That is, (m-j,) is
the mass flux from the minus side to the plus side across a
surface of unit area with normal unit vector n, and (n-q) is
the heat flux across a surface of unit area in the same direc-
tion. Similarly the momentum flux is given by [m-x]. This
quantity may also be interpreted as the force exerted by the
minus material on the plus material across a surface of unit
area with normal unit vector n. If at that surface the fluid is
flowing with a velocity v, then the rate of doing work by
the minus material on the plus material will be the force times
the velocity or ([m-x]-v), which may also be written as (n-
(7 vD.

The molecular fluxes may be written in component form
in the same way as the convective fluxes. In particular, the
momentum flux tensor is #=X%,88m;, in which m is the flux
of k-momentum in the positive j-direction. It may also be in-
terpreted as the force in the k-direction on a unit area perpen-
dicular to the j-direction, this being the force exerted by the
minus material on the plus material.

The notation used for the convective and molecular fluxes
is summarized in Table 1. The sign conventions for the con-
vective fluxes are generally agreed upon, as are those for the
mass-flux vector and the heat-flux vector. In kinetic theory and
transport phenomena it is usual to use the sign convention
for = given above, so that all three molecular fluxes obey the
same sign convention that is used for the three convective
fluxes [Bird et al., 1960; Waldmann, 1958; de Groot and Ma-
zur, 1962; Chapman and Cowling, 1970; Ferziger and Kaper,
1972; Baird and Collias, 1995]. An additional advantage is
that compression is regarded as positive, in agreement with
the accepted sign convention in thermodynamics [note that x
and pd have the same sign in Eq. (23)]. On the other hand,
in fluid dynamics and elasticity it is conventional to define
a total stress tensor o in such a way that [n- o] is the force
on a unit surface with normal unit vector n, the force being
transmitted from the plus material to the minus material. Thus
#z=— 0. This difference in convention causes no real problems
as long as one keeps in mind the physical significance of the
sign convention being used.

In solving transport phenomena problems, experimental val-
ues for the transport properties and equation of state should
be used whenever possible. Data on viscosity and thermal con-
ductivity for pure fluids can be found in a variety of hand-
books, but data on mixtures are more difficult to find. Exper-
imental data on binary diffusivities are not particularly plen-
tiful, and those for multicomponent diffusion are quite scarce
[see, for example, Landolt-Bémstein, 1952; Reid, et al., 1987;
Vargaftik, 1983; Yaws, 1995; Stephan and Heckenberger, 1988;
Rutten, 1992]). Two important sources of information are

Table 1. The convective and molecular fluxes

Entity being transported Convective flux Molecular flux
Mass of species a PaV Ja
Momentum pvY x=pd+7
Energy % pv 2v+pﬁv q

the Journal of Physical and Chemical Reference Data, and
the data bases maintained by the Chemical and Physical Prop-
erties Division of the National Institute of Science and Tech-
nology.

In the absence of data, some help can be obtained from ex-
perimental correlations based on the principle of correspond-
ing states [BSL, Figs. 1.3-1, 1.3-2, 8.2-1, 16.3-1]. For dilute
gases and gas mixtures, responsible estimates can be made us-
ing the Chapman-Enskog kinetic theory of gases, along with
a realistic intermolecular force expression [Hirschfelder et
al., 1964; Waldmann, 1958]. For liquids, the theory is much
less well developed, and empiricisms have to be resorted to.
Some assistance regarding theory and experiment can be ob-
tained from reviews of the literature [Millat et al., 1996].
2-3. Conservation Laws Leading to the Equations of Change

In this section we give the derivation of the principal par-
tial differential equations needed for formulating transport phe-
nomena problems. These are the four equations of change
based on the principles of conservation of mass, momentum,
energy, and angular momentum. The derivations are given here
by applying the conservation laws to an arbitrarily chosen, fix-
ed volume in space (the “control volume”) through which any
kind of fluid--Newtonian or non-Newtonian--is flowing (see
Fig. 5). The equations can also be derived by applying the
conservation laws to an arbitrary material element of fluid
as it proceeds through space undergoing deformation. In eith-
er case one arrives at the equation of continuity, the equa-
tion of motion, the equation of energy, and the equation of
angular momentum. Here we give the equations in terms of
the molecular fluxes, and in Section 2.6 the equations are

v

i

14

Fig. 5. An arbitrary control volume V, fixed in space, through
which a fluid mixture is flowing. At each point on the
surface S there is an outwardly directed unit normal vec-
tor n. The region inside V is the “minus region”, and the
region outside V is the “plus region’. The mass rate of
flow of substance a leaving the volume through the sur-
face element dS by convection is p (- v)dS, where v is
the mass-average velocity of the fluid. The mass rate
of flow of o leaving the volume through dS by diffusion
is (n-j2)dS. The force exerted by the minus material
on the plus material through dS is [n- x}dS.
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given in terms of the transport properties.
a. The Equations of Continuity

First we apply the law of conservation of mass for spe-
cies « to the control volume in Fig. 5. This law states that
the mass of species « within the volume V increases because
of the addition of « across the surface S by convection and
by molecular motion (i.e., by diffusion), and because of pro-
duction of o by chemical reaction. Mathematically this is writ-
ten as follows:

%I‘, PadV=—_[s(n.PaV)dS—L(n.ja)dS +Ivradv, (26)

in which r, is the rate of production of mass of species A
per unit volume by chemical reactions. On the left side, the
time derivative may be taken inside the integral, since the
volume V is fixed. The two surface integrals on the right
side may be rewritten as volume integrals by using the Gauss
divergence theorem (see Eq. (88)). This gives

[ 2 padv=—f (V-pa)V-[ (V-iddV+[ rav.  (@7)

Then, since the volume V was arbitrarily chosen, the integrands
may be equated to give

3 pu==(V-p0) - (Vi) 41, a=1,2,.N. (28)

This is the species equation of continuity. For nonreacting
systems, the kinetic theory of gases leads to the same result,
but without the last term [see Eq. (12)]; similarly the kinetic
theories of liquids and polymers give Eq. (28) [Bearman and
Kirkwood, 1958; Curtiss and Bird, 1996b]. When all N equa-
tions are added, and when use is made of the relations X, p,=
P Lujo=0, and X x,~0, we obtain

a = .
5xP="V-pv). (29)

which is the equation of continuity for the fluid mixture. If
it can be assumed that the fluid density is constant, Eq. (29)
becomes simply (V- v)=0.
b. The Equation of Motion

We next apply the law of conservation of momentum to
the control volume V in Fig. 5. This states that the linear mo-
mentum within the volume V increases with time because of
the addition of momentum by convection and by molecular pro-
cesses, and also because of the effect of the external forces
acting on the individual species. In mathematical formalism
this becomes

%LP"dV=-Lln-PwldS—Isln~x1ds+ [ Zepogadv, (30)

in which g, is the force per unit mass acting on species a.
Throughout we exclude the possibility of magnetic Lorentz
forces. Once again the time-derivative operator can be mov-
ed inside the integral, and the two surface integrals on the
right can be converted into volume integrals, by using the
Gauss divergence theorem as applied to tensors [BSL, Eq. (A.
5-3)). When the integral signs are removed, we then get

%pv=—[V-pw]—[V-x]+Zap¢sw C2Y)
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which is the equation of motion for the fluid mixture. If all
species have the same force per unit mass acting on them
(as would be the case if gravity is the only external force),
or, if there is but one chemical species in the fluid, the last
term on the right side is just pg. The kinetic theory of dilute
monatomic gases leads also to Eq. (31), as seen in Eq. (13),
and the kinetic theory for monatomic liquids also gives Eq.
(31) [Irving and Kirkwood, 1950]. The kinetic theory of po-
lymers leads to an equation that differs from Eq. (31) in the
last term; also this theory gives a contribution to x associated
with the external forces that is not suggested in continuum
mechanics derivations [Curtiss and Bird, 1996a, §7 and Ap-
pendix A]. When there are conflicts between continuum me-
chanics results and kinetic theory results, it is clear that the
postulates tacitly made in the continuum theory may exclude
some effects that the structural theories can explain.

Furthermore, continuum arguments alone are not sufficient
for formulating the equations of motion for the individual
chemical species; it is possible to develop such equations by
means of the molecular theories of monatomic gases [Chap-
man and Cowling, 1970, Eq. 8.1-7], monatomic liquids [Bear-
man and Kirkwood, 1958, Eq. 4.20], and polymers [Curtiss
and Bird, 1996b, Eq. 21].
c. The Equation of Energy

Next we turn to the application of the principle of con-
servation of energy to the control volume V. This is, in fact,
a statement of the first law of thermodynamics for an open
system. It has to be assumed in this derivation that the in-
ternal energy per unit mass Uis the same function of density,
temperature, and concentration as that for equilibrium (From
a molecular point of view the internal energy is the sum of
the kinetic energies of all the constituent molecules plus the
sum of all the intermolecular interaction energies). With these
points in mind, we can state the conservation law as follows:
the kinetic and internal energy within V increases with time
because of the net addition of these two kinds of energy
across the surface, because of heat conduction across the sur-
face, because of work done at the surface S by the fluid as it
moves across the surface, and because of work done against
external forces. In mathematical terms this becomes

% v (% pV+ p{}]dv = —Is [n . [%pv2 + pﬁ]v]ds
~ ;@ QdS - [ (@-[x-vDAS + [ Sulu+ pa¥)-£IAV. (32)

After bringing the time-derivative operator inside the integral,
converting the surface integrals to volume integrals, and re-
moving the integral signs, we get

91 Gl=-|v.(L Glv|-v.
g[ipv%»pUJ— [V (vaz+pU)v} V9
_(V . [ﬂ." V]) + Za((ia+ pav) ' ga)’ (33)
which is the (total) energy equation. If there is just one chem-
ical species, or if the external forces acting on all chemical
species are identical, the last term on the right side becomes
just (v-pg). Eq. (33) is more general than Eq. (14), obtained
from the kinetic theory of dilute monatomic gases, since it
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accounts for the rotational and vibrational energies of the mole-
cules, as well as for the intermolecular potential energies. Eq.
(33) is not, however, sufficiently general to account for some
additional effects that arise in the energy equation for poly-
meric liquid mixtures [see Curtiss and Bird, 1996a, Egs. (8.1)
and (8.15)].
d. The Equation of Angular Momentum

Finally we apply the law of conservation of momentum to
the control volume V of Fig. 5. This states that the total an-
gular momentum (including the flow angular momentum and
the internal angular momentum) within V increases with time
because of the addition of angular momentum by convection
and by molecular processes, and also becaue of the action of
external torques and the torques associated with the external
forces. When this is captured in mathematical form we have

%J'V(p[r x v] + pLydV = —js(n ~v)plr X v] + pL)dS

- js [n-AldS — js [r [n % AJ}dS + jv[r X PulJdV
+[ Tapdadv. G4

Here f‘ is the internal angular momentum per unit mass, A is
the molecular flux of angular momentum, and t, represents
the external torque per unit mass acting on species . When
this integral conservation equation is treated in a manner sim-
ilar to that for the other conservation statements, we get the
equation of change for angular momentum in the form [Dahler
and Scriven, 1961]

2 (pfrxv]+ ply =V - (ovlr v} + pvi)] - [V 4
=~V {rx 2} ]+ I X TPl + oot (35)

This equation has seldom been used, because of the lack of
information about the molecular angular momentum flux and
the internal angular momentum flux per unit mass.
¢. The Substantial Derivative Forms of the Equations of Change
The equations of change can be written in two ways: the
o/dt-form (in which the changes at one point in 3-dimensional
space are described, as above) and the D/Dt-form (in which
the changes following one material element of fluid are de-
scribed). We now discuss the relation between these two forms
of the equations.
To begin with, there are two ways to describe fluid motion:

(a)In the Eulerian description, we specify the fluid velocity
at all locations r in space for all times t. That is we describe
the motion by giving v(r, t).

(b) In the Lagrangian description, we specify the locations
of all fluid particles for all times t. If a fluid particle is lo-
cated at position r' in space at some past time t', and if that
same particle is located at r at the current time t, then the
motion of a fluid particle is given by the function r=r(r’, t' t);
that is the location of the fluid particle r', t' will be at r at
time t. Note that r’, t' is used as a “particle label”. [We use the
term “fluid particle” for a tiny “lump” of the fluid within the
continuum and not to an individual molecule.]

The velocity of a fluid particle at time t is given by

Vol 1, 1) = %x({, ¢, 1). (36)

That is, we differentiate the particle position r with respect
to the time t for the given particle r', t' (that is, we take d/0¢
holding r', t' constant). The fluid velocity at r at time t is ex-
actly the same as the fluid particle velocity at the same point,
so that

vp(, ¥, )= v(r, 1). 37

The fact that there are two ways of describing fluid motion
leads to two kinds of time derivatives: we can describe how
a quantity is changing at a fixed position in space (the par-
tial derivative 9/9t, in which r is held constant), or we can
describe how some quantity changes at a fixed particle as it
moves through space (the substantial derivative D/Dt, in which
the particle label r', t' is held constant).

For example, for a scalar quantity, such as temperature, we
can define two quantities: T(r, t) the temperature of the fluid
at position r and time t, or TAr, t, t), the temperature of the
fluid at the fluid particle r', t' at time t. Since these quantities
are numerically the same, we can write

Tp(r, ¥, 1y ="T(t, t). (38)

The time rate of change of the fluid temperature following
some fluid particle, can be obtained by differentiating this
equation with respect to t holding the particle label constant; to
do this we use the chain rule of partial differentiation to get

B A5 GLEL-GLEL

oz JaT
FLEL e

Since (dx/dt),,, is the x-component of the fluid particle veloc
ity v«{r’, t', t) which in turn is the x-component of the fluid
velocity v(r, t), we may then write

d _(dT aT aT
(ﬁrp j (W] (g} [W]

w, [%] (40)

Then if we choose to designate (3T, /3t),,, by the less cumber-
some symbol DT/Dt, we have

ﬁ=7+(v-VT). (41)
The operator D/Dt is called the substantial derivative (or ma-
terial derivative) since it describes how some quantity changes
with time as one moves along with the substance (or material).

Similarly, applying the chain rule of partial differentiation
to Eq. (36) and following a similar procedure, we get for the
substantial derivative of the velocity

% - % +[v -yl 42)

That is, the symbol Dv/Dt describes the change of the veloc-
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ity of the fluid particle with time--that is, the fluid particle
acceleration. Note that the operation [v-Vv] may also be writ-
ten as (v-V)v; for some purposes it is useful to write it as
%V(v W)-[v X [VXxV]}.

To interconvert equations between the D/Dt notation and the
d/ot notation, the relations

p2X = 3 ox+(ov- V), and p2X = L pX 4 [ov-VX], (43)

are used for scalar (X) and vector (X) quantities respective-
ly. The derivation of these relations requires the use of the
equation of continuity.

We now summarize the equations of continuity, motion, en-
ergy, and angular momentum written in terms of the D/Dt no-
tation. It should be emphasized that no assumptions are intro-
duced in going from the 9/0t forms of the conservation equa-
tions to the D/Dt forms.

Mass: 22 ——p(v.v), (a4)
. Da, .
Mass of Species a: P o =~V jo +1g, 45)
. Dv
Momentum: P = -V A+ P> (46)

Energy: p% (%vh-ﬁ) =(V-@-(V-[®-Vv])
+ ZalOa + Pa¥) - 8a)- @7
Angular Momentum: p%([r xvi+Ly=—V- Al
(VA X &  + (X Zopolal + Zapter  (48)

These equations, together with the expressions for the fluxes
and the thermal equation of state (0 T, o, @, o, --)]
and the caloric equation of state [U=U(V T, o, o, s, )]
form a complete set of equations which can be solved with
the appropriate boundary conditions
2-4. Other Equations of Change

The five equations of change derived in the foregoing sec-
tion, Eqgs. (44) to (48), are based on the principles of conser-
vation of species mass, total mass, momentum, energy, and
angular momentum. In this section we present several addi-
tional equations of change that can be obtained from the con-
servation equations.
a. The Equation of Change for Mechanical Energy

By forming the dot product of the local fluid velocity vec-
tor v with the equation of motion, we obtain the following
result:

which is the mechanical energy equation. For fluids with a
singie chemical species, or if the only external forces result
from the gravitational field, the last term becomes p(v-g). If
the gravity force acts in the negative z direction, and if the
equation is further simplified by assuming steady state and
an inviscid fluid, then the equation can be put into the form
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pv%v2 — plv X [Vx V]| = -Vp - pgVz, (50)

Then we form the dot product of this equation with the unit
vector in the flow direction, s=v/v|, and write (s-V)=d/ds where
s is the distance along a streamline. Then integration along
the streamline from point “I” to point “Z° gives the Bernoulli
equation for the steady-state flow of a hypothetical inviscid
fluid

P
SO+ [ do g -2)=0. 1)

This equation interrelates the pressures, the velocities, and ele-
vations at points 1" and “2" along a streamline. This same
equation can be found by integrating the energy equation for
isentropic flow along a streamline [Bird and Graham, 1997].
b. The Equation of Change for Internal Energy

When the mechanical energy equation of Eq. (49) is sub-
tracted from the total energy equation, we obtain

P U=~V @~ (x:V¥) + Sl £, 2)

which is the internal energy equation. For fluids containing
one chemical species only, the last term is zero. Note that the
quantity (#: Vv) appears in Egs. (49) and (52) with opposite
signs, indicating that this quantity describes how energy is in-
terconverted between the mechanical and internal forms. Note
further that, if the sole external force is that of gravity, then
the last term in Eq. (52) is zero.
¢. The Equation of Change for Temperature

From Eq. (52) we may obtain an equation of change for
enthalpy by replacing Uby E(p/p). Then, it is assumed that
H can be expressed as a function of p, T, and composition,
and furthermore that the standard formulas from equilibrium
thermodynamics can be used [see BSL, §10.1); with these as-
sumptions the enthalpy equation can be transformed into the
following equation for the temperature, which is generally more
useful:

PGy 2L =~V 0) - (1: V) + p(V- v)+ o’ 82
(a‘"Tl 24 SEMIAC -1 (53)

in which the H, are the partial molar enthalpies. For pure
fluids the terms involving diffusion and chemical reaction are
zero. The energy equation can be put into many other forms
[BSL, Tables 10.4-1 and 18.3-1].

For polymeric liquids it is not possible to make the step
from Eq. (52) to Eq. (53), because the enthalpy is not simply
a function of temperature, pressure, and composition [for a short
discussion, see Christensen, 1982, Chapter 3 for a continuum-
mechanics treatment for linear viscoelastic fluids, and Curtiss
and Bird, 1996a, Appendix C, for a lowest-order molecular
treatment for nonlinear viscoelastic fluids].

d. The Equation of Change for Bulk Angular Momentum

If the cross product is formed between the position vector
r and the equation of motion, the following equation of
bulk angular momentum results:
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polrxv]=—AV-{rxx'} ]+ plrx Tpgd e:a'].  (54)

Here € is a third-order tensor with components &x=-(i—)j —K)
(k—i). Eq. (54) was obtained from the equation of motion
without assuming the symmetry of = If Eq. (54) is subtract-
ed from the D/Dt form of the total angular momentum equa-
tion in Eq. (35), one gets the equation of change for internal
angular momentum. In this equation there appears the term
—[e: x'], that is, the last term in Eq. (54), but with the op-
posite sign. Thus this term couples the internal angular mo-
mentum equation to the bulk angular momentum equation and
describes the way in which the two forms of angular momen-
tum are interconverted. For Newtonian fluids, for which x is
known to be symmetric, the transpose sign may be removed
from the symbol =, and, in addition, the term [e: x'] is zero.
Thus the assumption of a symmetric stress tensor implies that
there is no interconversion between internal and bulk angular
momentum associated with the flow, and Eq. (54) suffices
for describing the angular momentum in a flowing system.

The assumption of the symmetry of x has been normally
made in discussion of fluid dynamics. The kinetic theories for
monatomic gases [Chapman and Cowling, 1970], monatomic
liquids [Irving and Kirkwood, 1950], and polymers [Curtiss
and Bird, 1996a] indicate that the assumption of symmetric z
is valid [for futher comments and literature references regard-
ing the symmetry of the stress tensor, see Dahler and Scriven,
1961; Dahler and Scriven, 1963; Condiff and Dahler, 1964,
Dahler, 1965; Kuiken, 1995; Serrin, 1959, §7].
e. The Equation of Change for Entropy

For the sake of simplicity, in this subsection, only binary
mixtures are considered. To obtain the entropy equation we
need the following differential relation from equilibrium ther-
modynamics:

d0=TdS+ (p/p2)dp + [(CxMys ) - GpMy M, (55)

Here G, is the partial molar Gibbs free energy. This is then
substituted into Eq. (50). Then Day/Dt and Dp/Dt are eliminat-
ed by using the species equation of continuity, Eq. (45) and
the total equation of continuity (Eq. (44)). In this way, one
obtains, after some rearrangement, the following entropy equa-
tion:

A

P =V-9+e. (56)

in which s is the entropy flux and g, is the entropy produc-
tion, given by

s= 1@ asin) = 1@ - ZFEMi) + EEMio),  (57)

T?

-t (%MJ - (r:%Vv]. (58)

Here m:(EA/MA)— (aB/M,,), and the summations in Eq. (57)
just extend over A and B. The entropy generation has been
written in Eq. (57) as a sum of products of “fluxes  and

ee=~{(@ i) 357 [J 1o 60 -2

“forces” . This provides the starting point for the discussion
of the nonequilibrium thermodynamics of the transport phenom-
ena in §2-5.
2-5.The Molecular Fluxes from Nonequilibrium Thermody-
namics

It was pointed out that the expressions given in Section 2-
2 for the fluxes are incomplete. Here we show how nonequi-
librium thermodynamics can provide additional insight into
the formulas for the molecular fluxes.

In extending thermodynamics from equilibrium to nonequi-
librium systems it is necessary to add the following:

a.It is assumed that locally, the standard relations among
thermodynamic quantities for systems in equilibrium are also
valid in nonequilibrium situations. We already used this idea
in obtaining the equation of change for temperature from the
internal energy equation.

b.It is assumed that the relations between the fluxes and
the driving forces can are linear, and that fluxes can result
from all forces present. That is, (flux)=2.0 (force), in which
the ¢y are coefficients independent of the forces and fluxes.

c.In (b) there is coupling between fluxes and forces only
when the tensorial orders of the fluxes and forces are the same
or differ by 2 (Curie's law).

d. The matrix of coefficients oy is symmetric (in the absence
of magnetic fields); the relations ou=cy; are called the Onsager
reciprocal relations.

With these statements in hand we can now make use of the
entropy production expression in (Eq. (58)).

If we now make use of statements (b) and (c) above, and
if we use the abbreviation V=V isHgs — ), the expressions
for the mass and energy fluxes are:

. 1 1

= _an?vﬂ',w - alz?z_VT’ (59
. 1 1

q—Hu = _a12‘,FVl/,w - %ZFVT- (60)

We solve the first equation for Vi and substitute it into
the second to get

a, | a?
q= (u + ;‘T}A - [azz-— ﬁ]%w (61)

The coefficient of VT in this equation is defined to be the
thermal conductivity of the mixture (and not the coefficient
of VT in the preceding equation).

Next we develop the expression for the mass flux. Since s
is not a convenient variable, we consider it to be a function
of ay, T, and p, so that

0 lyp 0 tyg ou
Vg = Vo, + VT+ AB Vp.
( o ]P,T [ o e ® Jra

(62)

Then Eq. (59) assumes the form
ja =Pl [V, +k VT +k, Vp +ke(gs — 84)), (63)
in which the coefficients D,s, kr, k,, and k. are given by
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D =ﬂ[8uw J =ﬁl_[MRT(81naA/8lnxA)pJ } (64)
'p.T

T | do, T M, M; 0, @y
ky _ O[Ot |, % 65
k _ 0w | _oufav 66
Plan T[E)p}rm T |oa, | (66)
. r
pDABkF=i,Il-.1—' (67)

Here k; is the coefficient of thermal diffusion. In going from
Eq. (59) to Eq. (63), ou, and o, have been replaced by D,
and k; (the coefficients k, and k. are just expressed in terms
of D4 and quantities derivable from the equation of state of
the fluid). Eq. (63) shows that a mass flux can result from
concentration gradients (ordinary diffusion), from temperature
gradients (thermal diffusion or the Soret effect), from pressure
gradients (pressure diffusion), and from extemal forces (forced
diffusion) [cf. BSL, Eq. (18.4-15), and also Eqgs. (18.4-8) to
(18.4-11), where no derivations were given].

Next we return to the expression for the heat flux q given
in Eq. (61). When we make use of the definition of thermal
conductivity and an expression for the ratio oy»/ay; that can be
obtained from Eqgs. (64) and (65), the energy flux becomes

Olyp Olyp .
= |, — | k| s —kVT
q=|Hus T[ 3T me + T[BCDA a
0, o

= KVT+ (—i—&}h +k,[a”‘” J i (68)

M, M, dw,

This shows that the heat flux contains one term associated
with the temperature gradient (heat conduction), a term result-
ing from diffusion, and a third (very small) term which is re-
ferred to as the Dufour effect or the diffusion-thermo effect.
This term does not appear in Eq. (24) [see also BSL, Egs.
(18.4-2) and (18.4-3), where no derivation was given; for in-
depth discussions of the nonequilibrium thermodynamics as
applied to transport phenomena, see de Groot and Mazur,
1962; Landau and Lifshitz, 1987; Hirschfelder et al., 1964;
for extensions to nonlinear transport phenomena see Beris and
Edwards, 1994; Grmela and Otﬁnger, 1997, Otﬁnger and Grme-
la, 1997; Ottinger, 1998].
2-6. The Equations of Change in Terms of the Transport
Properties

When the conservation equations in Egs. (44) to (48) are
combined with the flux expressions in Egs. (22) to (24), we
get the equations that are to be solved for Newtonian fluids
for the pressure, composition, velocity, and temperature. These
are the starting equations that are used when one is doing a
complete numerical solution of a problem, with the tempera-
ture, concentration, and pressure dependence of all physical
properties being taken into account. To get analytical solu-
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tions to idealized problems, the equations are often simplifi-
ed by assuming constant physical properties and possibly dis-
carding unimportant terms (for example, the dissipation terms
in the energy equation, when the viscosity and the velocity
gradients are appropriately small). In this section we present
some of the standard approximate equations that have been
widely used in textbooks and research publications.
a. The Equations for Diffusion

Substitution of the expression for the mass flux in Eq. (22)
into the species continuity equation gives for a binary mixture:

Da,

PW=(V'PDABV“’A)+IA- (69)

However, if it is appropriate to assume that the density and
diffusivity are constant, then Eq. (69) becomes the diffusion
equation,

D,
l;’[‘ =D, V2, +1,. (70)

To solve this equation, many analytical methods are known
and many solutions tabulated [Crank, 1956; Aris, 1975]. Chemi-
cal reactions taking place in the body of the fluid and are de-
scribed by the term 1, are referred to as homogeneous chem-
ical reactions; reactions occurring at a solid surface (such as
a catalytic surface) are called a heferogeneous chemical reac-
tions and are described by means of the boundary condi-
tions.
b. The Equation of Motion

When the Newtonian expression for the stress tensor is sub-
stituted into the equation of motion, and when it is assumed
that the fluid has constant density and viscosity, the following
equation is obtained for a pure fluid:

p% =-Vp+uVv +pg, or P% =-VP+uviv, (7D

in which ?=p+p&is referred to as the modified pressure. Many
solutions to the Navier-Stokes equations have been worked
out [Villat and Kravichenko, 1943; Dryden et al., 1956; Berker,
1963]. For flows with two nonvanishing velocity components,
reformulation of the problem in terms of the stream function is
often helpful [BSL, §4.2; Goldstein, 1938; Bird et al., 1987a,
Table 1.4-1]. For some laminar flow problems analytical solu-
tions can be obtained by asymptotic methods or by using
scaling arguments [Leal, 1992].

If, in addition, it assumed that the viscous forces are neg-
ligible, then Eq. (71) becomes Euler's equation of motion for
inviscid fluids.

p% =-VP +pg, (72)

Many analytical solutions are known for this equation [Lamb,
1932; Milne-Thompson, 1955; Frisch, 1995].

For creeping flow (sometimes called Stokes flow) one can
omit the left side of Eq. (71) and obtain

0=-VP +uV2v, (73)

which is the basis for low Reynolds number hydrodynamics
[Happel and Brenner, 1983; Kim and Karrila, 1991]. This



Viewpoints on Transport Phenomena 117

equation, with specified boundary conditions, may be reformu-
lated as a problem in the calculus of variations; this is referr-
ed to as the Helmholtz-Korteweg variational principle [Lamb,
1932; Bird et al., §4.3, 1987a; Carey and Oden, 1986].

By taking the curl of the Navier-Stokes equation in Eq. (71),
the equation for vorticity may be obtained in either of two
forms

Dw 1w W]+ wWow, or DY —[e{Vv- Vv 4 wWow, (74)
Dt Dt
in which w=[V xv] is the vorticity vector and v is the kinemat-
ic viscosity. Note that one-half the vorticity vector is just
the local angular velocity of the fluid. In two-dimensional
flows [w-Vv] vanishes, and the vorticity w satisfies a diffu-
sion equation [Batchelor, 1967; Serrin, 1959, §40]. The vortic-
ity vector is used in defining the corotating coordinate frame
that leads to the Jaumann derivative used in rheology [Bird
et al., 1977, Chapter 7]. There are, however, other kinematic
quantities that can be used to define rotating coordinate sys-
tems for use in constructing rheological constitutive equations
[see Wedgewood and Geurts, 1995].
c. The Equation of Energy

For a pure fluid, insertion of Newton's law and Fourier's
law (Egs. (23) and (24)) into the energy equation, Eq. (26),
gives

& DT _ . _(9mp ) Dp
PG Dt V-kVD) (alnT l, Dt +o, (73)

in which @ is the dissipation function, defined by

o= %p[[Vv + (V)T - %(V-v)b’]:

[Vv +(Vv)' — %(V : v)b']] +K(V V) (76)

Since, for Newtonian fluids, the dissipation function is a sum
of squares, it is a positive quantity. It describes the imeversible
conversion of mechanical energy into heat. The last term in
the entropy equation (Eq. (58)) is the dissipation function di-
vided by the temperature.

If the thermal conductivity and fluid density are both con-
stant, Eq. (75) simplifies to

pé,,%:kvz'l\f(b, an

and the terms containing (V-v) in the dissipation function
vanish. If the viscous dissipation is sufficiently small that it
can be neglected, Eq. (77) is identical in form to Equation
(70) if no chemical reactions are occurring. The similarity of
the two equations is the basis for discussions of analogies be-
tween heat and mass transport problems. Many solutions of the
heat conduction equation are available [Carslaw and Jaeger,
1959; Leal, 1992].
d. Boundary Conditions

All of the differential equations given in this section must
be solved with boundary and initial conditions. Although the
differential equations are generally agreed upon, the choice of
boundary conditions can sometimes be controversial. The rea-

son for this is that sometimes the physical or chemical situa-
tions at the boundaries of the system may not be well un-
derstood.

In solving the Navier-Stokes equation it is customary to
assume that the fluid “clings” to the bounding surfaces, so that
fluid velocity v is equal to the velocity of the surface. This
well-known “no-slip” boundary condition has been challeng-
ed [Richardson, 1973]; the "no-slip” condition on smooth walls
turns out to be equivalent to a “complete slip” boundary con-
dition at a corrugated surface! For some problems, it may be
possible to specify the shearing force at the surface (the vis-
cous normal stresses are zero for Newtonian fluids for any
kind of flow, when the assumption of incompressibility is
made). At a plane interface between two immiscible liquids,
the usual interfacial conditions are that the fluid velocity
and the normal component of the momentum flux are con-
tinuous. At the interface between a liquid and a gas, it is of-
ten assumed that there is no momentum transfer between the
liquid and the gas. For the Euler equation of motion for the
(fictitious) inviscid fluid the component of v normal to a fix-
ed surface must be zero, but the tangential component is free
to take on any value.

For problems in nonisothermal flow, at the bounding sur-
faces one can specify the temperature or the heat flux. At
the interface between a solid and a fluid, in solving the heat
conduction equation in the solid region, one may assume that
the heat loss from the solid to the fluid is proportional to the
difference between the solid surface temperature and the tem-
perature in the bulk of the fluid, and the proportionality coef-
ficient is called the “heat transfer coefficient” . This is some-
times referred to as Newton's law of cooling.

For problems involving mixtures, one can specify the con-
centration or the mass flux at the bounding surfaces. Also,
one can specify the rate at which a material disappears at a
catalytic surface when there is a heterogeneous chemical re-
action. In addition, the diffusional analog of Newton's law
of cooling can be used, with the coefficient of proportion-
ality being referred to as the “mass-transfer coefficient . In eva-
porating systems, it is customary to assume that the concen-
tration of the evaporated liquid in the gas phase is related to
the equilibrium vapor pressure of the liquid; this “equilibrium
at the interface” assumption can be questioned, particularly
when rapid evaporation of a highly volatile liquid is involv-
ed.

For gases at low density, in the Knudsen region, it is not
possible to use the boundary conditions that the velocity, tem-
perature, and concentration in the fluid are the same as the
corresponding quantities of the wall. Instead, one has to in-
troduce the notion of viscous slip, temperature slip, and dif-
fusion slip at the surfaces.

2-7. Polymeric Liquids

Polymeric liquids pose a special problem for the chemical
engineer, since they are non-Newtonian liquids; that is, they
are not described by Eq. (23). From the viewpoint of engi-
neering calculations, probably the most important feature of
these fluids is fact that in a steady shear flow the viscosity

is found to depend very strongly on the velocity gradient. This
can be described very easily by introducing empirical expres-
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sions in which the viscosity depends on the velocity gradient
(the generalized Newtonian models). The “power-law model,
the “Eyring model’, the “Carreau model’, and many others
have been widely used and are reasonably successful for de-
scribing the shear stress in steady-state shear flows [BSL, §1.2
and §3.6; Bird et al., 1987a, Chapter 4]. But the non-Newto-
nian viscosity is not the only property that comes into play
in polymer processing operations.

Even in steady-state shear flow (v,=), v,=0, v,=0) the gen-
eralized Newtonian models do not describe the polymeric lig-
uid behavior completely. It has been amply demonstrated ex-
perimentally that in steady-state shear flow, the normal stresses
Tas Ty T are in general not zero and not equal to each other
[Lodge, 1964, Chapter 10; Bird et al., 1987a, Chapters 2 and
3]. These normal stresses can be described by the Criminale-
Ericksen-Filbey equation [BSL, Eq. 3.6-11; Bird et al., 19874,
Eq. 9.6-18]. But this equation is incapable of describing flows
that are not steady-state shear flows.

To describe the time-dependent response of polymeric lig-
uids in motions with infinitesimally small displacement gra-
dients, one can make use of linear viscoelastic models. These
are of the form:

. R
T+}~1%T+ﬂ1%’l’+ =—ﬂo(7’+32%7+#2¥7+ ], (78)

in which 7=Vv+(Vv)' is the rate-of-deformation tensor, and
the +--- indicates that additional terms may be included, con-
taining third and higher time derivatives. The A, g, --- are
constants characteristic of the fluid with dimensions of (time),
(time)’, -+, and 7, is the zero-shear-rate viscosity. If all the
constants but A; are zero, the equation is the Maxwell linear
viscoelastic model, and if all the constants save A, and A, are
zero, we have the Jeffreys linear viscoelastic model. The latter
can describe qualitatively stress relaxation after cessation of
steady-state shear flow, stress growth at the start-up of shear
flow, creep, recoil, and a variety of other unsteady-state re-
sponses--but only in motions that involve minuscule deforma-
tion gradients. Moreover, it cannot describe the strong depend-
ence of the viscosity on the velocity gradients, nor can it de-
scribe the nonzero normal stresses in steady-state shear flow.

To describe all the rheological effects mentioned so far (non-
Newtonian viscosity, normal stresses, and time-dependent re-
sponses) some success has been achieved by rewriting the line-
ar viscoelastic models in a corotating frame (a frame that ro-
tates with the local instantaneous angular velocity w=%[Vx
v]) and then transforming back to the fixed coordinate frame.
When this is done for the Jeffreys model, we get

rm%n—nﬂ(w A%r) 9

which is the corotational Jeffreys model. Here the operator
D/Dt is the corotational or “Jaumann™ derivative, defined by

R — 1

DtT—DtT {wx1t}-{wx1}t, (80)
for symmetrical 7. The reason for introducing the corotational
derivatives is to insure that the resulting expression for the

stress tensor will be “objective” --that is, it will have no un-

March, 1998

wanted dependence on the local rate of rotation in the fluid
[Bird et al., 1977, Chapter 7]. Eq. (79) is found to have--qual-
itatively--most of the features needed for describing the rhe-
ological response of polymeric liquids, but the model is not
sufficiently good quantitatively to be used in engineering flow
calculations [Bird et al., 1977, §7.3]; however, in view of the
fact that only three parameters are involved (a zero-shear-rate
viscosity and two time constants), the development of Eq. (79)
must be regarded with some satisfaction. In the past several
decades many attempts have been made to generate--empiri-
cally--rheological equations containing the ideas of viscosity,
elasticity, and objectivity, but which, with a small number of
parameters, will be capable of quantitative fits of the available
experimental data. Accounts of this quest have been given in
a number of books, and no attempt is made here to discuss
this extensive research field [Bird et al., 1987a, b; Larson,
1988; Giesekus, 1994; Bird and Wiest, 1996].

The above-described empirical development is a difficult task
because we are dealing with the generation of tensor rela-
tions that must describe a very broad spectrum of rheolog-
ical phenomena. In order to give some better sense of direc-
tion to the field, attempts have been made to use the kinetic
theory to suggest likely forms for the tensor relations. We
cite here just one example of an expression that comes from
a nonlinear dumbbell model (the so-called “FENE-P model”)
which has received a lot of attention in the past decade as a
reasonable subject for study in flow simulations. For a poly-
mer solution at temperature T, in which the number density
of polymer molecules is n, the stress tensor is given as the
sum of a solvent contribution (the solvent viscosity being 7,)
and a polymer contribution as follows:

T=T+ T =Y+ %, (81)

in which, the polymer contribution is given by [Bird et al.,
1987b, §13.5]

. 1,. .
Iy +iy [_D%Tp - 5{7' b+ 7})

DInZ
= A (% — nkTO)—

Here A,~={/4H is a time constant, and Z=1+3/b)[1 — tr(7,/3nkT)],
where b=HQJ/kT is an “extensibility parameter”. The “bead-
spring’ model parameters that enter into these quantities are:
Qo=maximum extension of the dumbbell, H=spring constant for
the “spring”, {=friction coefficient for a "bead” moving through
the solvent. This equation contains a small number of adjust
able parameters, each one of which has a specific molecular
significance. If one uses Eq. (82) to solve a fluid dynamics prob-
lem, then one can get from the final results some additional
information about molecular orientation and stretching.

In current research programs algorithms are being develop-
ed to solve the kinetic theory equations and the fluid dynam-
ics equations simultaneously, using stochastic simulations
for the kinetic theory and finite element methods for the fluid
dynamics [Ottinger, 1996]. All of the subjects in this section
are part of the frontier developments and are covered in the
Journal of Non-Newtonian Fluid Mechanics, the Journal of
Rheology, and Rheologica Acta.

=-nkTh, Y. (82)
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Heat added to the flow system from the
surroundings
Q
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Mechanical work performed by the flow
system on the surroundings via moving
parts

Plane b

Fig.6. A "macroscopic system , which may be all or a part
of some large assembly of equipment. Application of
conservation statements to this kind of system lead to
the macroscopic, mass, momentum, angular momentum,
and energy balances. The macroscopic mechanical en-
ergy balance, on the other hand, must be obtained by
integrating the equation of change for mechanical en-
ergy over the entire system.

3.THE MACROSCOPIC VIEWPOINT

We now consider a macroscopic system such as that shown
in Fig. 6. The system is the fluid contained between the in-
let pipe (“1") with cross-sectional area S, and the outlet pipe
("2") with cross-sectional area S,, the remainder of the sur-
face being made up of fixed surfaces S; furthermore there
may be moving surfaces S,, by means of which the system
can do work on the surroundings at a rate W,. Heat may be
added to the system at a rate Q through some of the fixed
surfaces of the system. The directions of flow at the inlet
and outlet are given by the unit vectors m;, and n,. For the
purpose of this discussion we consider the fluid in the sys-
tem to be a single chemical species; it is not difficult to ex-
tend the discussion to multicomponent systems with chem-
ical reactions [BSL, Chapter 22].

In establishing the macroscopic balances we make several
assumptions:

a. Over the surfaces of the entrance and exit planes, it is
assumed that the pressure, fluid density, internal energy, and
potential energy do not vary.

b.It is assumed that in the entry and exit pipes the fluid
is moving parallel to the walls of the pipe, so that the fluid
velocity vectors (or the time-smoothed velocity vectors in tur-
bulent flow) are in the directions n, and n, at the inlet and
outlet respectively.

c. It is assumed that the contributions of the stress tensor 7
and the heat-flux q vector at planes 1" and “2" may be neglect-
ed, becausc these quantities are normally small in comparison
with other contributions.

3-1. Macroscopic Balances Based on Conservation Laws
When the. above assumptions are made, it is possible to
write down directly the following statements of the laws of

conservation of mass, momentum, angular momentum, and
total energy [BSL, Table 15.3-1]:

d
Emax =W —w, (83)

d <vprw <vw
—Pu= ( ad +p181]n1— [ v, +stz]nz
<> <vy>

1

—Ff s Ty 8, (84)
d = <v?>w,+ S, [ Xn,] - <v}>w2+ S, [[r; X my]
El‘lol = < piS; |[1 X, <> P22: (12

- Tf—~s + [rc X Mg g]’ (85)
d 1 <vf> A A
E(Km' + @, +Urov)= [3 <> + @I+Hl]wl

1 (V%> A A
13 os +&,+H, w,+ Q-W,,. (86)
2

In these equations w,=p;<v,>S, is the mass rate of flow at
the entry plane, and a similar expression holds for the mass
rate of flow at the exit plane. The quantities my., Pu, L
K., --*, are the total mass, linear momentum, angular mo-
mentum, kinetic energy, --- in the system, and g=—V<'I\>is the
acceleration of gravity (taken to be unvarying with time).
The vectors Fr., and Ty, are, respectively, the total force
and total torque exerted by the fluid (f) on the solid (s) sur-
faces. The angular brackets imply averages over the cross-
sections at the inlet and exit planes, and these averages arise
because of the variation of the fluid velocity over the cross-
section. The position vectors r;, I, and r, give the locations
of the centers of the entrance and exit planes and the loca-
tion of the center of mass of the system; the terms containing
the position vectors are only approximate, inasmuch as these
vectors are not included in the relevant averaging processes.

These macroscopic balances can be written down directly
by applying the conservation laws, but they can also be ob-
tained by integrating the corresponding equations of change
over the entire volume of the flow system, taking into account
the fact that the volume of the system is changing with time, be-
cause of the inclusion of moving mechanical parts. [Bird, 1957;
Slattery and Gaggioli, 1962]. We do not gives these deriva-
tions here, but, instead, illustrate the procedure in connection
with the derivation of the mechanical energy balance in the
next subsection.

3-2. The Macroscopic Mechanical Energy Balance

A macroscopic mechanical energy balance cannot be writ-
ten down immediately, since it does not follow from a con-
servation law. Instead, we begin with the equation of change
for mechanical energy and integrate it over the flow system
of Fig. 6 [Bird, 1957, 1993; Whitaker, 1989, pp. 90-93].

We start by rewriting the equation of change for mechan-
ical energy (Eq. (49)) for a pure fluid in the o/ot-form and by
introducing the potential energy per unit mass & defined by
the relation g=—V. It is assumed that @ is time-independent,
so that the equation of continuity may be used to rewrite the
mechanical energy equation as follows:

Korean J. Chem. Eng.(Vol. 15, No. 2)
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g[gpvup@):_[v‘gmup&)v]
—(V-[&V]) + (m: VV). (87)

We now want to integrate this equation over the entire vol-
ume of a flow system. To do this, two integral theorems are
needed, the Gauss divergence theorem for any vector func-
tion A (%, y, z, t) and the Leibniz formula for differentiation
of a three-dimensional integral of a scalar function f (x, y, z,
t) [BSL, Egs. (A.5-1) and (A.5-5)]:

Gauss: V({)(V~A)dv=js([)(n-A)dS, (88)
Leibniz: S|, fxy.20dv=[, Have[ fm veds
S v %Y vy ot )

in which V(t) and S(t) are the volume and surface of the sys-
tem, which may depend on time because of the moving parts,
and vy is the local velocity of that part of the surface which
is moving.

When Eq. (87) is integrated, the three-dimensional Leibniz
formula is used on the first term and the divergence terms are
converted to surface integrals, and we get

d 1 A 1 A
o (Epv2 + ptbjdv = _.[5(,) [n - [Epvz + p‘DJ(v - vs)]dS

-js(,)(n.[x-v])dsqv

The surface S(t) consists of four surfaces: the fixed surfaces
Sy, on which both v and v, are zero; the moving surfaces S,,
on which v=vg, both being nonzero; the cross-sections of the
entry and exit ports, S, and S,, where v; is zero, but not v.
The term on the left of Eq. (90) becomes the time rate of
change of the total kinetic and potential energies (K+®y)
within the control volume, whose shape and volume are in
general changing with time. We next consider seriatim the
three terms on the right: Term (1) contributes only at the
entry and exit ports, and this gives the influx and efflux of

© (x:Vv)dV, (90)

kinetic and potential energy [%P1<V13>51+P1<V1>&’151J and

- [%p2<vg>sz+p2<vz>(’ibzszj. The angular brackets indicate aver-

ages over the cross-sections, and the subscripts “1” and “2"
show that the quantities are evaluated at planes “1” and 2.
Term (2) gives, at the entry and exit ports, the work done to
force the fluid into the system and to force the fluid out of
the system; it is customary to neglect the viscous forces and
include here only the pressure forces, so that this term gives
rise to the terms p,<v;>S; and — p,<v,>S,. Term (2) gives no
contribution on the fixed surfaces, but on the moving sur-
faces gives the rate of work done on the surroundings by
means of the moving parts W,. Term (3) may be split up
into two parts—the part associated with the pressure, and that
associated with the viscous forces--and these are given sym-
bolic designations:

EC = _J.V(r) (ps VV)dV = _IV(,) p(v ) V)dV, (91)
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B, =, (T: VW)V, (92)

The quantity E, is the rate of dissipation of mechanical en-
ergy within the control volume and, for Newtonian fluids, is
always positive, whereas E. may be ecither positive or negative;
however, E, can be discarded if the assumption of incompress-
ibility is made.

When these various contributions are inserted into Eq. (90),
we get finally for the macroscopic mechanical energy balance

%(Kux + D)= [%P1<V13>Sl + p1<v1>(I1\51 S+ P1<V1>SIJ

1 A
- [5p2<v23>s2 + py<vy>®, S, + p2<v2>52]

-W, -E, —E,, (93)
or
d _ l<vf> A P
I(Kwt +‘on¢)—[2 Py +¢1*‘le“’1
. B s i 4
2 <vy> o 2
~W, -E, -E,. (94)

This is sometimes referred to as the engineering Bernoulli
equation or the overall mechanical energy balance. This equa-
tion is used together with the overall mass, momentum, an-
gular momentum, and total energy balances for analyzing en-
gineering flow systems [BSL, Chapters 7 and 15; Whitaker,
1968; Bird, 1993]. The form of the mechanical energy bal-
ance give in Eq. (94) is much to be preferred over those
given in BSL, Eqgs. 15.2-1 and 2; if the fluid can be regard-
ed as incompressible, the term E. may be discarded, as point-
ed out above.

If the macroscopic mechanical energy balance in Eq. (94)
is subtracted from the total energy balance in Eq. (90), a ma-
croscopic intemnal energy balance is obtained:

LU = 0w, — O + Q+Ec +, 5)
This equation, which is an interesting relation among thermal
quantities, cannot be written down immediately, inasmuch as
there is no law of conservation of internal energy.

It is clear from the derivation above that Eq. (94) is ob-
tained from the law of conservation of momentum. In some
textbooks it is stated (incorrectly) that the mechanical en-
ergy balances is “an alternative form of the total energy bal-
ance”; indeed, some textbook authors have obtained Eq. (94)
by subtracting Eq. (95) from the total energy balance in Eq.
(90), failing to recognize that Eq. (95) cannot be written down
from first principles.

3-3. The Macroscopic Balances for Steady-State Systems

Frequently the macroscopic balances are simplified by as-
suming time-independent flows and neglecting the change
of velocity over the cross-sections at “1" and “Z’. At the same
time, it is convenient to generalize the balances by allowing
for multiple entry and exit ports. We then get the following
for the four conservation statements and the mechanical en-
ergy balance:
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zwl - ZWZ =0, (96)
T(viwy +piSpmy — X(vow, + oSy + my, g =F, 67

3(vwy + PSPl X my] = X(vawa + poS))[r, X my)
+[rr XMy g] = Tf—'x > (98)

Z(%v12+gh1 +ﬁ[]w, —Z(%vf+ghz+flz]wz+0—wm =0
(Co)]

b3 [%Vlz +gh, + (Pl/Pl))Wl - Z(%Vf +gh, + (Pz/Pz))Wz
W —E —E. =0, (100)

Here Zw, means a sum over all entry ports of the mass flow
rates; h, is the height of the entry port above some arbitrarily
chosen datum plane. The enthalpy that appears in Eq. (99) is
obtained from the following cquation:

A A Ta Pl a a\’\/
H-Ho=[ GdT+[ (V-T[<=| |dp, 101
.G Iﬁ,( (H]} p (101)

™

in which the symbols with a superscript “0" refer to an arbi-
trary reference state. The integration paths must prescribed,
since each integral may depend on both p and T.

Egs. (96) through (100) constitute a set of five equations
which have to be solved simultaneously. Most textbooks (in-
cluding BSL) do not emphasize sufficiently that the use of this
set of equations usually requires some intuition (to decide
which terms are important and which ones can be safely ne-
glected), some additional information (such as heat-transfer co-
efficients or friction factors), and perhaps some photographs
or flow visualization in order to decide which terms may be
safely neglected, or to estimate their value.
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